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Abstract: 

In recent years, with the rapid growth of China's economy and the high level of energy consumption, 

the problem of air pollution has become one of the most important environmental issues to be resolved. 

In the past literature, we found that (i) few systematic studies using panel data to combine natural factors 

and socioeconomic factors, and (ii) most of them are concentrated in national or part of areas. In order 

to analyze the spatial effect and effective factors of air pollution, this paper takes SO2 and NOX emissions 

as the research object of air pollution, and used spatial econometric model to analyzed the panel data of 

31 provinces in China from 2011 to 2017. First, we analyzed the spatial distribution and spatial 

autocorrelation of two air pollutants through maps and Moran's I. We found that air pollution has 

significant and strong spatial autocorrelation. Then, we selected the fixed-effect spatial lag model 

through Hausman test and Lagrange Multiplier test. Finally, we analyzed the effect of natural and 

socioeconomic factors on air pollution through fixed-effect spatial lag model. The results show that 

heating degree days, population, added value from secondary industry, and urbanization rate had 

positive and statistically significant impact on the air pollution emissions, while cooling degree days, 

per capita GDP, population density and relative humility had significant negative effects. Precipitation 

had no significant effect. By analyzing the effect factors of air pollution, we have put forward related 

suggestions such as strengthening regional cooperation, vigorously developing the tertiary industry, and 

promoting industrial upgrading to improve air pollution. 

 

Keywords: Sulphur dioxide emissions, Nitrogen oxides emissions, natural factors, socioeconomic 

factors, spatial autocorrelation, spatial econometric models 
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1. Introduction 

1.1 Background 

Over the past few decades, with economic growth rapidly and large-scale urbanization, China's harmful 

gas emissions have increased significantly due to the upsurge in energy use. As a result, pollution 

problem has become increasingly serious. Li and Zhang, (2014) pointed out that the persistent large-

scale air pollution not only hindered China's economic development, but also adversely affected daily 

life and people's health. The way to effectively control discharging of air pollutants and to improve 

urban ambient air quality has proved to be important goals of social and economic transformation of 

development in China (Wang et al., 2014). 

The Chinese government has been trying to alleviate the problem of air pollution. In China’s Twelfth 

Five-Year Plan (2011–2015), control of nitrogen oxides (NOX) emissions, sulfur dioxide (SO2), and 

other major particulate matter was implemented nationwide, and NOX emissions were first be 

incorporated into the constraint indicator system (Ding et al., 2017). Although the plan has been 

amended many times, the situation of severely polluted air has not been effectively improved. According 

to the reference in 2017, 99 of the 338 (29.3%) prefecture-level cities and above nationwide met ambient 

air quality standards. Similarly, a 2013 report by the Asian Development Bank and Tsinghua University 

scholar states that seven out of the world’s ten worst air quality cities are located in China (Huang, 2018). 

Less than five of China’s 500 cities meet air quality standards set by the World Health Organization 

(WHO) (Huang 2018). Therefore, air pollution has been one of the most concerned and anticipated 

problems for a long time. 

 

1.2 Literature review 

Recent studies on air pollution have focused on pollutant emissions (SO2 and NOX), and pollutant 

concentrations (particulate matter (PM) and air quality index (AQI). The influencing factors of air 

pollution are extensive and complex, and many researchers have worked to discover the causes of 

changes in air pollutant emissions in China. Table 1 summarizes the literature on the factors affecting 
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air pollution, which mainly includes natural factors and socioeconomic factors. About natural factors, 

Requia et al., (2019) employed generalized additive models to estimate weather-associated changes in 

PM2.5 composition in the US during 1988–2017. They found that wind speed and relative humidity were 

associated with the most PM2.5 components during both warm and cold seasons. Feng et al., (2019) 

aimed to identify the dominant variable of the air pollution using global datasets of fine PM2.5 

concentrations, precipitation, and air temperature. The results show that air pollution is mainly 

negatively correlated with precipitation and positively correlated to temperature in tropical, arid, and 

temperate regions. However, the conditions are much more complex in cold regions. Chen et al., (2016) 

used Spearman-Rank analysis and the Complete Ensemble Empirical Mode Decomposition with 

Adaptive Noise method to study the influencing factors of PM2.5 in Nanjing, China from 2013 to 2015. 

They found that PM2.5 exhibits a reversed relation with wind speed, relative humidity, and precipitation. 

Although temperature had a positive association with PM2.5 in most months, a negative correlation was 

observed during the entire period.  

About socioeconomic factors, Chang et al., (2018) decomposed SO2 and NOX emission variation into 

the change of socioeconomic driving factors in China using the logarithmic mean Divisia index method. 

They showed that energy intensity and economic growth have a large positive impact on the increasing 

of SO2 and NOX emissions. Peng et al., (2018), based on a noncompetitive (import) input-output model 

for China from 1995 to 2009, showed that economic expansion played an important role in accelerating 

air pollution emissions, and fixed capital formation is the main driver of air pollutant emissions, 

followed by household consumption and exports. Zeng et al., (2019) employed a spatial econometric 

model to empirically test the effects of two types of energy policies on China's emissions of major air 

pollutants, namely PM10, PM2.5, and SO2 emissions. The results offer evidence that provincial emission 

reduction policies have positive impacts on reduction of PM10, whereas provincial renewable energy 

policies have positive impacts on the reduction of SO2 and PM2.5. Hu et al., (2019) used the structural 

equation modelling to quantify the contributing effects of various driving forces of air pollution in 2015 

in prefecture-level cities of China. The results showed that industrial scale, city size, and residents’ 
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activities have a significant impact on NOX pollution. Hu et al., (2019) estimated the linkages among 

total SO2 emissions, total GDP and energy efficiency using China's provincial panel data from 2002 to 

2015. The analysis shows that GDP has a positive impact on total SO2 emissions in the short run and 

energy efficiency has a significant negative effect on emissions in the long run. Wang et al., (2016) used 

the Stochastic Impacts by Regression on Population, Affluence and Technology regression model to 

analyze the relationship between socioeconomic factors (economic growth, income, and urbanization) 

and SO2 emissions in China, and indicated an inverted U-shaped curve relationship between economic 

level and SO2 emissions. This suggests an environmental Kuznets curve in SO2 emissions. Fu and Li 

(2020) used spatial econometric models and geographic and temporal weighted regression model to 

analyze the relationship between global socioeconomic factors and PM2.5 in the global scale from 2000–

2014. The results suggested that renewable energy consumption ratio, per capita GDP, per capita CO2 

emission, urban population ratio, and fossil fuel consumption ratio were major factors responsible for 

the global PM2.5 pollution. Ryou et al., (2018) selected estimated sources of PM10 and PM2.5 

contributions performed for 2000–2017 in South Korea using Positive Matrix Factorization and 

Chemical Mass Balance. They found that secondary aerosol and motor vehicle contributed highly to 

PM10 and PM2.5, while the contribution of combustion/industry was high for PM10. Zhao et al., (2019) 

also used a multiple linear regression model analysis to evaluate the relationship between PM2.5 

concentration and socioeconomic factors from 2015 to 2016. They found that population density and 

the share of the secondary industry were key factors in controlling air pollution. Zhao et al., (2018) used 

a panel data model (2004–2012) to quantify the effective factors of ambient PM2.5 concentrations in five 

hot spots in China. The results show that GDP and private cars are important positive factors for PM2.5 

concentration. Other studies indicated that urbanization (Hao et al., 2020) and the number of vehicles 

(Xu et al., 2019) have a positive impact on air pollution. McCarty and Kaza, (2015) investigate the 

relationship between urban spatial structure and air quality in the United States. Controlling for 

demographic variables and economic activity, they found a strong relationship between the type and 

pattern of economic development and pollutant levels. Although these studies helped us to understand 
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the causes of the reductions in air pollution, they focused only on socioeconomic factors but do not 

consider natural factors.  

There are also comprehensive studies considering of both natural and socioeconomic factors. Yang et 

al., (2017) used a series of global regression models (ordinary least squares model, spatial lag model, 

and spatial error model) and local geographic weighted regression models to process 2014 data for 113 

major cities in China. The results indicated that precipitation exerts a significant effect on SO2 reduction. 

Both emission and temperature factors were found to aggravate SO2 concentrations, although no such 

significant correlation was found in relation to wind speed. Liu et al., (2017) quantitatively estimated 

the contribution and space spillover of different natural and socioeconomic factors to the AQI of 289 

prefecture-level cities in 2014. They found that urbanization, urban population aggregation and 

industrialization had a significant positive impact on the AQI. The spillover effect of car density is also 

positive significant. Except for temperature is insignificant, all of natural factors had a negative impact 

on AQI. Han et al., (2019) utilized local regression models to explore the main influential factors on 

AQI in China. They found that there are spatial differences in the effects of different factors on the AQI. 
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Table 1 Summary of the factors effecting air pollution in the literature. 

Factors Literature Region Period Method Variables 

Natural factors Feng et al. 

（2019） 

Global 1998–2015 Geographically Weighted Regression; 

Tropical Rainfall Measuring Mission; 

anomaly interpolation approach 

Dependent variable: PM2.5 concentrations 

Effect factors: precipitation, temperature 

Chen et al. 

(2016) 

Nanjing in China 2013.4.1–

2015.12.31

Spearman-Rank analysis; Complete 

Ensemble Empirical Mode 

Decomposition with Adaptive Noise 

(CEEMDAN) method 

Dependent variable: PM2.5 concentrations 

Effect factors: temperature, wind speed, relative humidity, 

precipitation 

Socioeconomic 

factors 

Peng et al. (2018) China 1995–2009 structural decomposition analysis Dependent variable: SOX emissions 

Effect factors: economic expansion, fixed capital formation, 

household consumption and exports 

Zeng et al. (2019) 31 provinces 2003–2016 Ordinary Least Squares regression 

(OLS) , spatial autoregressive model 

(SAR) and spatial error model (SEM) 

Dependent variable: PM10, PM2.5, and SO2 emissions 

Effect factors: emission reduction policies; renewable energy 

policies 

Zhao et al. (2018) 85 cities (1996) and 200 

cities (2000) in China 

1996, 2000 Structural equation model Dependent variable: SO2 and NOX concentration 

Effect factors: household electricity consumption, civilian vehicles, 

urban built-up area, resident population, secondary industry GDP, 

tertiary industry GDP, power generation, and urban heated area 

Fu and Li 2020 Global 2000–2014 geographical and temporal weight 

regression (GTWR) 

Dependent variable: PM2.5 concentration 

Effect factors: energy consumption, renewable energy 

consumption ratio, fossil fuel consumption ratio, forest area, 

population density, per capita GDP, per capita CO2 emission, 

fertilizer consumption, urban population ratio, and high technology 



6 

export 

Zhao et al. (2019) 269 cities in China 2015–2016 Ordinary Least Squares regression 

(OLS) 

Dependent variable: PM2.5 concentration 

Effect factors: urban size (population, size of built-up areas, and 

gross domestic product (GDP)), population density, share of 

secondary industry, total amount of private vehicles, per capita 

disposable income 

Zhao et al. (2018) 5 hot spots (Yangtze 

River Delta, Bohai Rim, 

Pan–Pearl River Delta, 

Central region, and 

Western region) in 

China 

2004–2012 The coefficient of divergence (COD) 

and stochastic Impacts by regression on 

Population, Affluence and Technology 

(STIRPAT) model 

Dependent variable: PM2.5 concentration 

Effect factors: GDP, total population, vehicles, private cars, taxi 

Hao et al. (2016) 73 cities in China 2013 spatial Lag model (SLM), spatial Error 

Model (SEM) 

Dependent variable: Air Quality Index (AQI) and PM2.5 

concentrations 

Effect factors: GDP per capita, industrial structure, vehicle 

population, population density 

Natural and 

socioeconomic 

factors 

Yang et al. (2017) 113 cities in China 2014 OLS, SLM, and SEM, local, 

geographic weighted regression 

(GWR) model 

Dependent variable: SO2 concentration  

Natural factors: precipitation, temperature, wind speed, relative 

humidity 

Socioeconomic factors: SO2 emissions (the sum of industrial and 

household emissions) 

Liu et al. (2017) 289 cities in China 2014 spatial Durbin model (SDM) Dependent variable: Air Quality Index (AQI) 

Natural factors: temperature, precipitation, atmospheric pressure, 

relative humidity, wind speed, elevation 

Socioeconomic factors: NDVI, green ratio, total population, urban 
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population, GDP, urban land, industry, population density, per 

capita GDP, car density 

Han et al. (2019) 152 cities in China 2016 global and local regression model Dependent variable: Air Quality Index (AQI) 

Natural factors: temperature, precipitation, atmospheric pressure, 

wind speed, elevation, green ratio 

Socioeconomic factors: secondary industry GDP, industrial 

structure, population density, per capita GDP, urbanization rate, 

number of civil vehicles, traffic mileage 
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To improve air quality, you must first determine the composition of the major pollutants in air pollution. 

From the antecedent literature, we can see that many studies are about (SO2 and NOX) emissions and 

fine PM concentrations. In this article we define air pollution as SO2 and NOX emissions. The specific 

reasons are as follows. (1) Although PM contains a mixture of different particulate components, most 

air pollutants come from power generation and industrial processes. SO2 and NOX are the sources of air 

pollution. For the SO2, although China has achieved significant reduction since 2007 from 36.6 Mt to 

8.4 Mt in 2016, it is still the world second largest emitter (Hu et al., 2019). China emits about 25% of 

the world's NOX (Cui et al., 2013). The sources of NOX mainly include waste gases generating in burning 

of fossil fuels and producing of explosives, dyes, nitric acid, and nitrogenous fertilizer (Lee et al., 1977; 

Cui et al., 2013). Zhang and Crooks, (2012) found that over 70% of SO2 emissions is derived from 

industrial point sources, including thermal power stations. (2) There are few studies on the emissions of 

various pollutants, which can make up for the research gaps here. In summary, in this study we take SO2 

and NOX emissions as the dependent variables of air pollution, and explore the natural and 

socioeconomic factors of air pollution. 

Regarding the research model, although some previous studies (Zhao et al., 2019; Zhao et al., 2018) 

focused on identifying the drivers of air pollution, they tended to address the factors that affect the 

changes in air pollutant concentration levels over time. Considering that regional air pollutant discharge 

has the characteristics of spatial spillover and spatial diffusion, we choose two main models in the spatial 

econometric model: the spatial lag model (SLM) and the spatial error model (SEM). The SLM and SEM 

in the spatial econometric model capture the spatial by allowing the regression model parameters to vary 

with spatial and has been applied in many studies (Zhao et al., 2018; Fu and Li 2020; Liu et al., 2017; 

Zeng et al., 2019).  

 

1.3 Purpose 

Through the review of the literature, we can know that most research on air pollution focuses on 

socioeconomic factors and ignores natural factors. Only a few people have conducted comprehensive 
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factors research using single-year data in a part of cities. Although the city-level research will be more 

specific, considering the long-term and availability of the data, we selected the provincial-level data for 

2011–2017. 

The purpose of this study is to explore the following questions. What are the spatial effect and effective 

factors of air pollution? This paper combines natural factors and socioeconomic factors, through 

comparative study of the models, spatial econometric model was used to analyze the nine effect factors. 

The results of effect factors are of great significance for China to improve air pollution from various 

factors. 

The remainder of this paper is organized as follows. In the next section, variable selection of the data 

and the spatial econometric models are introduced. Then, the result and discussion of spatial 

autocorrelation, model selection and effecting factors of air pollution are presented respectively. After 

analyzing the results, the conclusion and policy implications are presented. 
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2. Data and methodology 

In this chapter, we introduce the selection of influencing factors of SO2 and NOX emissions, and explain 

the spatial econometric model and estimation method. The estimation method is the process of selecting 

the appropriate model by Hausman test and Lagrange Multiplier test. 

 

2.1 Variable selection 

By reviewing the literature, we learned that not only natural factors can affect air pollution, but also 

socioeconomic factors are also influencing factors of air pollution. Considering the data availability, we 

choose nine factors. Table 2 provides the detailed description of the selected factors. 

 

Table 2 Definition and statistical description of influencing factors of air pollution. 

Factors Variables Units Definition Mean SD Min Max 

Air pollution SO2 ton Annual sulfur dioxide emissions 

in each province 

561809 398404.

2 

3463 1827397

NOX ton Annual nitrogen oxide emissions 

in each province 

624496 424650.

9 

30154 1801138

Natural factors HDD ℃ Heating degree days of a major 

city in each province 

2295 1380.9 45.4 5465.6 

CDD ℃ Cooling degree days of a major 

city in each province 

171.2 166.1 0 685.5 

PRE mm Annual precipitation of major 

cities in each province 

942.5 565.9 148.8 2939.7 

RHU % Annual average relative humidity 

of major cities in each province 

65.3 11.9 33.5 84.58 

Socioeconomic 

factors 

POP 104 people Permanent population at the end 

of the year 

4399 2769.8 303 11169 

PD km2/person Population density 2797 1164.1 515 5821 

URB % Urbanization rate 55.58 13.4 22.73 89.61 

PCGDP yuan/person Per capita GDP 50239 23517.4 16413 128994 

SDA 109 yuan Added value from secondary 

industry 

100058.

9 

8299.7 208.8 39654.9 

 

Many studies have revealed that natural factors affect air pollution. For example, Meng et al., (2008) 
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suggested that strong temperature inversions influence vertical distribution of SO2 and NO2 

concentrations over urban Beijing. Li et al., (2014) confirmed that temperature is negatively correlated 

with air pollution index. Therefore, it is important to consider temperature as a factor of air pollution. 

This study selected the daily temperature. However, the temperature itself is not appropriate to capture 

hot summer and cold winter with linear models. Therefore, degree days (heating degree day (HDD) and 

cooling degree day (CDD)) were calculated using the daily temperature. HDD refers to the cumulative 

daily temperatures below a base temperature in a year, while CDD refers to the cumulative daily average 

temperatures above a base temperature. Degree days are defined as the difference between the daily 

mean temperature and a given reference temperature. In calculations, the reference temperature is 

considered to be a comfortable temperature for humans, and it varies across countries and regions. Here, 

according to the reference, 18°C and 26°C are used as the reference temperatures for HDD and CDD, 

respectively. Eq. (1) and (2) are used to calculate the degree days. 

 

𝐻𝐷𝐷 ൌ ෍ 𝑟𝑑ሺ18 െ 𝑇௠ሻ

௣

௠ୀଵ

 (1)

𝐶𝐷𝐷 ൌ ෍ 𝑟𝑑ሺ𝑇௠ െ 26ሻ

௣

௠ୀଵ

 (2)

 

where p is the number days in the year. 𝑇௠ is the daily mean temperature for day 𝑚, and 𝑟𝑑 is equal 

to ሺ18 െ 𝑇௠ሻ or ሺ𝑇௠ െ 26ሻ if 𝑇𝑚 is lower than 18 or higher than 26 and is equal to 0 otherwise. 

Bai et al., (2019) and Li et al., (2014) found that precipitation and humidity were negatively correlated 

with air quality. Furthermore, Yang et al., (2017) revealed that precipitation maintained a negative 

relationship with SO2 concentration levels. Precipitation has a dissolving effect on air pollutants, with 

greater precipitation increasing the wet deposition of pollutants. Liu et al., (2019) showed that 

precipitation is beneficial to reduce PM2.5 concentration, but no significant causality was found with 

relative humidity. Therefore, we included RHU and PRE as one of the effect factors in our models. In 

other studies, topography (Hester and Harrison 2009), precipitation (Li et al., 2014), relative humidity 
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(Whiteman et al., 2014) , wind speed (Liu et al., 2019), sunshine duration (Statheropoulos et al., 1998), 

and road trees (Tong et al., 2016) are also found as important natural factors that influence air pollution. 

Due to this study used provincial-level annual data, we did not use wind speed, sunshine duration, roads 

trees, topography, and other factors in this study. 

As for socioeconomic factors, five variables were selected based on the literature. Human activities have 

a positive impact on SO2 emissions, and these effects did vary in areas (Yang et al., 2017). Zhao et al., 

(2018) showed that the resident population had both direct and indirect effects on urban air quality. 

Therefore, the POP may have a large impact on air pollution. 

About population density, its impact on air pollution is somewhat complicated. On the one hand, higher 

population density would lead to higher degree of urbanization and industrialization, which will 

positively affect air quality (Hao et al., 2016). On the other hand, high population density makes it 

possible for the intensive use of energy, which reduces total emissions of pollutants and is therefore 

beneficial to the environment (Hao et al., 2016). Huang (2018) used the population density as a control 

variable in the panel spatial Durbin model and pointed out that higher population density can reduce 

SO2 emissions. Therefore, we used PD as one of the independent variables to analyze the relationship 

between population density and pollutant emissions. 

In addition, Bai et al., (2019) takes the Yangtze River Economic Belt as a study area, and they showed 

that pollution and urbanization factors were positively correlated with air pollution. Similarly, Han et 

al., (2014) confirmed that urbanization exerted a significant effect on PM2.5 concentrations in urban 

areas and surrounding regions. Therefore, URB is one of the important factors affecting air pollution. 

According to the literature, Brajer et al., (2008) provided evidence of an N-shaped relationship between 

SO2 and income. And Fu and Li (2020) indicated that per capita GDP was the main factor causing global 

PM2.5 pollution. Therefore, this article used PCGDP as one of the independent variables of air pollutions. 

In other studies, Jiao et al., (2017) showed that the development of the secondary industry has stimulated 

the use of coal and greatly increased the concentration level of PM2.5. Among the various influencing 

factors of NOX pollution, the GDP of the secondary industry has the greatest impact (Hou et al., 2018). 
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Therefore, this paper introduces the added value of the SDA as an explanatory variable. 

 

2.2 Data 

This article explores the effects of two air pollutants emissions from natural and socioeconomic factors. 

In this study, considering the availability and comprehensiveness of the data, we adopted the annual data 

of the 31 provinces from 2011 to 2017. According to the prior literature (Hu et al., 2019; Cui et al., 2013; 

Lee et al., 1977; Zhang and Crooks, 2012), we selected SO2 emissions and NOX emissions1  as the 

dependent variables of air pollutants. The data for degree days is calculated based on the temperature 

data2. The annual average precipitation and relative humidity were taken from the reference. Regarding 

the natural factors of the independent variables, due to the difficulty in obtaining provincial data, this 

paper selects a major city3 as representatives. The data for socioeconomic factors were taken from the 

provincial data of the reference. 

 

2.3 Methods 

Spatial econometrics is a quantitative method to analyze the spatial interaction and spatial structure of 

economic activities. To better study the spatial dependence over the years, we have selected provincial 

data for the period 2011-2017. This study used an analytical framework shown in Figure 1 to determine 

the spatial autocorrelation and influencing factors of the dependent variables (i.e., SO2 and NOX 

emissions). The spatial autocorrelation test mainly tests the spatial aggregation characteristics of air 

                                                       
1 SO2 and NOX emissions were extracted from the reference. 
2 Temperature data is from the weather station reference. 
3 The selected major cities are as follows: Hefei (Anhui), Beijing, Chongqing, Fuzhou (Fujian), Yuzhong 

(Gansu), Guangzhou (Guangdong), Nanning (Guangxi), Guiyang (Guizhou), Haikou (Hainan), Shijiazhuang 

(Hebei), Harbin (Heilongjiang), Zhengzhou (Henan), Wuhan (Hubei), Changsha (Hunan), Nanjing (Jiangsu), 

Nanchang (Jiangxi), Changchun (Jilin), Shenyang (Liaoning), Hohhot (Inner Mongolia), Yinchuan (Ningxia), 

Xining (Qinghai), Jinghe (Shaanxi), Jinan (Shandong), Baoshan (Shanghai), Taiyuan (Shanxi), Wenjiang 

(Sichuan), Tianjin, Urumqi (Xinjiang), Lhasa (Xizang), Kunming (Yunnan), Hangzhou (Zhejiang). 
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pollutant emissions through Moran’s I and scatter plot. To explore the influencing factors, we need to 

select the appropriate spatial panel model through the Hausman test and the Lagrange Multiplier (LM) 

test. 

 

 

Figure 1. The framework of this study. 

 

2.3.1 Spatial autocorrelation analysis 

Spatial dependence is widespread for human geographical phenomena. Considering spatial dependence, 

regional air pollutant discharge has the characteristics of spatial spillover and spatial diffusion, and it 

have a great impact on air pollution of neighboring areas. Here we select the most commonly used 

Moran’s I to measure if the data have spatial correlation. The Moran’s I is defined as Eq. (3): 

 

𝐼 ൌ
∑ ∑ 𝑊௜௝ሺ𝑥௜ െ 𝑥̅ሻ൫𝑥௝ െ 𝑥̅൯௡

௝ஷ௜
௡
௜ୀଵ

𝑆ଶ൫∑ ∑ 𝑊௜௝
௡
௝ୀଵ

௡
௜ୀଵ ൯

 

    ൌ
∑ ∑ 𝑊௜௝

௡
௝ஷ௜

௡
௜ୀଵ ሺ𝑥௜ െ 𝑥̅ሻ൫𝑥௝ െ 𝑥̅൯

൫∑ ∑ 𝑊௜௝
௡
௝ஷ௜

௡
௜ୀଵ ൯ ∑ ሺ𝑥௜ െ 𝑥̅ሻଶ௡

௜ୀଵ

 

(3)

 

where 𝑛 is the number of spatial units indexed by i and j, 𝑊௜௝ is a matrix of spatial weight with zeroes 

on the diagonal (refer to Eq. (7) for details), 𝑥௜ and 𝑥௝ refers to the observations of spatial location i 

and j, and 𝑥̅ refers to the mean of x. The value of Moran’s I ranges from -1 to 1. When the value is 

close to -1, the spatial distribution will show a discrete trend. In contrast, when the value is close to 1, 

clustering trends appear in the spatial distribution. If the value is close to 0, it means no correlation. The 

results of Moran's I are not only displayed numerically, but also through Moran scatter plots. As shown 
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in Figure 2, the X axis of the Moran scatter plot represents the standardized (mean: 0 and standard 

deviation: 1) observation, and the Y axis represents the spatial lag variables of the standardized 

observation. The scatter plot is decomposed into four quadrants, and all quadrants exhibit spatial 

autocorrelation. The first quadrant indicates not only the province but also the surrounding provinces 

also have high pollutant emissions. The second quadrant indicates although the province’s pollutant 

emissions are low, the surrounding provinces are high. Third quadrant indicates not only the province 

but also the surrounding provinces have low pollutant emissions. Fourth quadrant indicates that although 

the province’s pollutant emissions are high, the surrounding provinces have low pollutant emissions. 

Therefore, if most provinces show positive spatial autocorrelation in the first and third quadrants, the 

Moran’s value is close to 1. On the contrary, if most provinces in the second and fourth quadrants 

indicate spatial negative spatial autocorrelation, and Moran’s value approaches -1. In addition, the slope 

of the linear smooth line in the figure is consistent with the Moran’s I value. 

 

 

Figure 2. An example of Moran scatter plot. 

 

2.3.2 Spatial panel models 

The spatial econometric model mainly analyzes the interaction and interdependence of spatial regions. 
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First, we consider a simple pooled linear regression model with space specific effects but without spatial 

interaction effects (Elhorst, 2010). The simple pooled linear regression model can be written as Eq. (4): 

 

𝑦௞௧ ൌ 𝑥௞௧𝛽 ൅ 𝑢௞ ൅ 𝜀௞௧ (4)

 

where k is an index for the cross sectional dimension (spatial units), with k =1,…,N, and t is an index 

for the time dimension (time periods), with t=1,…,T. 𝑦௞௧  is the dependent variable at k and t, 

𝑥௞௧represents the independent variables at k and t, and 𝛽 represents the regression coefficient. 𝜀௞௧ is 

an independently and identically distributed error term for k and t with zero mean and variance 𝜎ଶ, 

while 𝑢௞ denotes a spatial specific effect. The standard reasoning behind spatial specific effects is that 

they control for all space specific time invariant variables whose omission could bias the estimates in a 

typical cross-sectional study.  

Fixed effect models and random effect models are often used for panel data analysis. In the random 

effect models, the individual specific effect is a random variable that is uncorrelated with the explanatory 

variables. In the fixed effects models, the individual specific effect is a random variable that is allowed 

to be correlated with the explanatory variables.  

The spatial econometric model can effectively solve the spatial dependence problem. In order to 

examine and measure the possible effects, two main types of spatial econometric models are used in this 

study: the SLM and SEM. SLM can be interpreted that the dependent variable depends on the dependent 

variable observed in adjacent units and a set of observed local features. The SLM can be expressed as 

Eq. (5): 

 

𝑦௞௧ ൌ 𝛿 ෍ 𝑤௜௝′𝑦௝௧ ൅ 𝑥௞௧𝛽 ൅ 𝜇௞ ൅ 𝜀௞௧

ே

௝ୀଵ

 (5)

 

where 𝛿  is the spatial autoregressive coefficient and 𝑤௜௝′  is the spatial weight matrix after row-
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standardized of 𝑤௜௝ (refer to Eq. (9) for the details). 

The SEM considers that the dependent variable depends on a set of observed local characteristics and 

that the error terms are correlated across space. The SEM can be written as Eq. (6): 

 

𝑦௞௧ ൌ 𝑥௞௧𝛽 ൅ 𝜇௜ ൅ 𝜙௞௧ 

   𝜙௞௧ ൌ 𝜆 ෍ 𝑤௜௝′𝜙௞௧ ൅ 𝜀௞௧

ே

௝ୀଵ

 
(6)

 

where ∑ 𝑤௞௝
ே
௝ୀଵ 𝜙௞௧ denotes the interaction effects among the disturbance terms of the different units 

and 𝜆 refers to the spatial autocorrelation coefficient. 𝜙௞௧ reflects the spatially autocorrelated error 

term. 

 

2.3.3 Spatial weight matrix 

A spatial weight matrix is necessary when implementing spatial panel analysis. It provides spatial 

structure information between adjacent areas and how they interact with each other. How to choose the 

spatial weight matrix is the premise for data analysis. There are two types of spatial weight matrix, 

which are based on contiguity and on distance. Here we use a contiguity spatial weight matrix. The 

spatial weight matrix is defined as W with elements Wij indicating whether observations i and j are 

spatially close. If units i and j (not equal i) are neighbors, the spatial weight is 1, otherwise 0. 𝑊௜௝ can 

be written as Eq. (7) 

 

        𝑊௜௝ ൌ ቄ1 𝑖𝑓 𝑖 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑔𝑢𝑜𝑢𝑠 𝑡𝑜 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (7)

 

For example, spatial weight matrix based on contiguity where units 2 and 3 and units 3 and 4 are 

neighbors, but when units 2 and 4 are not neighbors, Wij can be written as Eq. (8). 
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𝑊௜௝ ൌ ൦

0 0 0 0
0 0 1 0
0 1 0 1
0 0 1 0

൪ (8)

 

The spatial weight matrix needs to be “row-standardized,” which means that the weights need to sum 

up to one on each row. The row standardization is needed because in a weighted average formula, the 

total weights must be 1. The spatial weight matrix based on Eq. (6) can be written as Eq. (9) 

 

𝑊௜௝′ ൌ ൦

0 0 0 0
0 0 1 0
0 0.5 0 0.5
0 0 1 0

൪ (9)

 

In order to study irregularly shaped area data, we need to create a spatial weight matrix. This study used 

neighboring information from 31 provinces in China (Figure 3 and Table 3). 

 

 

Figure 3. The geographical locations of Chinese provinces. 

 

 

No. Province        No. Province
1. Anhui             17    Jilin
2. Beijing           18    Liaoning
3. Chongqing     19    Inner Mongolia
4. Fujian            20    Ningxia
5. Gansu           21    Qinghai
6. Guangdong   22    Shaanxi
7. Guangxi         23   Shandong
8. Guizhou         24    Shanghai
9. Hainan          25    Shanxi
10. Hebei           26   Sichuan
11. Heilongjiang 27   Tianjin
12. Henan            28   Xinjiang
13. Hubei             29   Xizang
14. Hunan            30   Yunnan
15. Jiangsu           31   Zhejiang
16. Jiangxi
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Table 3 Geographical proximity information of 31 provinces in China. 

Number province adjacent information number province Adjacent information 

1 Anhui 12,13,15,16,23,31 17 Jilin 11,18,19 

2 Beijing 10,27 18 Liaoning 10,17,19 

3 Chongqing 8,13,14,22,26 19 Inner Mongolia 5,10,11,17,18,20,22,25 

4 Fujian 6,16,31  20 Ningxia 5,19,22 

5 Gansu 19,20,21,22,26,28 21 Qinghai 5,26,28,29 

6 Guangdong 4,7,9,14,16 22 Shaanxi 3,5,12,13,19,20,25,26 

7 Guangxi 6,8,9,14,30 23 Shandong 1,10,12,15 

8 Guizhou 3,7,14,26,30 24 Shanghai 15,31 

9 Hainan 6,7 25 Shanxi 10,12,19,22 

10 Hebei 1,12,18,19,23,25,27 26 Sichuan 3,5,8,21,22,29,30 

11 Heilongjiang 17,19 27 Tianjin 2,10 

12 Henan 1,10,13,22,23,25 28 Xinjiang 5,21,29 

13 Hubei 1,3,12,14,16,22 29 Xizang 21,26,28,30 

14 Hunan 3,6,7,8,13,16 30 Yunnan 7,8,26,29 

15 Jiangsu 1,23,24,31 31 Zhejiang 14,15,16,24 

16 Jiangxi 1,4,6,13,14,31  

 

2.3.4 Hausman test and Lagrange Multiplier test 

It is important to choose the suitable model after establishing the panel regression model. Here we 

perform a series of Hausman test to identify the presence of endogeneity in the explanatory variables, 

so as to effectively estimate random effects and fixed effects (Huang, 2018).  

After deciding to choose a random effects model or a fixed effects model, SLM or SEM need to be 

further selected. Based on the literature (Zeng et al., 2019; Anselin, 2005), here we choose the most 

popular LM test. This test is a general principle of testing the parameter assumptions in the likelihood 

framework. The hypothesis under test is expressed as one or more constraints on the values of 

parameters. To perform the LM test, only estimation of the parameters subject to the restrictions is 

required. 

The spatial regression model selection process is shown in Figure 4. It contains four LM tests as follows: 

LM-lag, LM-error, robust LM-lag and robust LM-error. In LM test, when the standard versions (LM-

Lag or LM-error) are both significant, the robust versions of the statistical tests are conducted. When 
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they are not, the properties of the robust versions may no longer hold. In the process of spatial regression 

decision, we need to consider the LM-error and LM-Lag tests. When both LM tests are not significant, 

stop the test. If only one of the LM-error and LM-lag tests is significant, the corresponding spatial 

regression model is chosen. When both the LM-error and LM-lag tests are significant, we need to 

conduct further robust tests. From the robust LM-error test and the robust LM-lag test, we need to choose 

the one which is most significant. Usually either robust LM-error or robust LM-lag make significance, 

or one of them is more significance than the other. In the latter case, we will choose the most significance 

spatial regression model. In the case both are highly significant, further checks are required for 

specifications errors. 

 

 

Figure 4. Spatial regression decision process. 

 

2.3.5 Software 

In this study, we mainly used two kinds of software. One is GeoDa for spatial regression analysis. In the 

study, we used GeoDa software to make a spatial description map of China and calculated Moran’s I 
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value.  

Because GeoDa cannot analyze spatial panel models, we also used R with the splm package, for the 

model analysis. The software is used for the Hausman test, the LM test, and analysis of the influencing 

factors of SO2 and NOX. 
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3. Results and discussion 

In this chapter, we have discussed mainly in two things. One is to describe the spatial effect of air 

pollution from the temporal and spatial distribution of air pollution and the results of spatial 

autocorrelation. The other is to use the appropriate model from the model test results to analyze the 

influencing factors of air pollution. 

 

3.1 Temporal and spatial distribution of air pollution 

According to reference, the total national emissions of SO2 decreased from 22.18 Mt in 2011 to 8.75 Mt 

in 2017. And the total emissions of NOx emissions decreased from 24.04 Mt in 2011 to 12.59 Mt in 

2017. We can know that national pollutant emissions have been gradually reduced from 2011 to 2017. 

In order to observe the air pollutant emissions in recent years from a spatial perspective, this study used 

GeoDa to map the changes in air pollutant emissions (Figure 5). Observing by region, we can know that 

the emissions of air pollutant in the northern and central areas, such as Inner Mongolia, Hebei, Henan, 

Shanxi, Shandong, and Liaoning, were higher than southern in 2011 and 2014. However, by 2017, the 

regions with high pollutant emissions changed from central and northern to northern. Han et al., (2019) 

pointed out that northern and central areas are densely populated, with a high car density and persistent 

traffic congestion. Cheng et al., (2017) also suggested that coal was mainly used for central heating in 

winter in the northern region, and the utilization rate of filter coal is low. At the same time, environmental 

dust removal equipment used by utility companies is inefficient. These caused SO2 generated by burning 

coal to be directly discharged into the air, thereby exacerbating local urban pollution. Regarding the 

Beijing-Tianjin-Hebei (BTH) region, severe air pollution has aroused great concerns of the Chinese 

government. The study (Zhu et al., 2017) have pointed out that increasing the burden on neighboring 

provinces also threatens the local environment. Pollutant emissions in the south and southwest were 

lower than other areas. This is because the areas with high pollutant emissions were gradually shifted 

from the southwest and south (Sichuan, Guizhou, Hunan, and Guangdong) to the north of China (Shanxi, 

Liaoning, Hebei, and Shandong). 
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Figure 5. Spatial distribution of two air pollutants with annual emissions. 

 

3.2 Spatial autocorrelation 

To test the spatial correlation of air pollutants in China, we use the Moran’s I statistics. Table 4 lists the 

Moran’s I statistics for SO2 emissions and NOX emissions in china from 2011 to 2017. As shown in the 

table, the Moran’s I values were positive and statistically significant at the 10% level for almost every 

year. These results indicate that there is a spatial positive autocorrelation in SO2 and NOX. The positive 

values indicate that areas with high air pollutants emissions tend to cluster together, and regions with 

low emissions tend to cluster together.  

The spatial clustering and heterogeneity can be further seen from the Moran scatter plots (Figure 6). The 

most provinces were located in the first and third quadrants, meaning that the emissions of SO2 and NOX 

exhibit positive spatial autocorrelation. Therefore, to improve air pollution, the neighboring provinces 

should strengthen cooperation and formulate local control measures. Specifically, from the scatter plot 

NOX 

2011 

2014 

2017 

unit: ton unit : ton 

SO2 
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of the two air pollutant emissions, we can find the following points. First, there was a positive spatial 

autocorrelation in the first and third quadrants for SO2 emissions in 2011, including Liaoning, Inner 

Mongolia, Hebei, Shanxi, Shaanxi, Henan, Shandong, Shanghai, Zhejiang, Jiangxi, Fujian, Hainan, 

Guangxi, Yunnan, Qinghai and Tibet. In 2017, expect for Shanghai, Fujian, and Guangxi, there was no 

change in the total number of provinces with positive correlations. Second, Heilongjiang, Liaoning, 

Inner Mongolia, Hebei, Shanxi, Shaanxi, Henan, Shandong, Jiangsu, Anhui, Zhejiang, Gansu, Xinjiang, 

Qinghai, Tibet, Sichuan, Yunnan, Guizhou, Chongqing, Hunan, and Guangxi were distributed in the first 

and third quadrants for NOX emissions in 2011. By 2017, except for Sichuan, Chongqing, Hunan and 

Guangxi, the total number of provinces with positive correlations has not changed. From these results, 

we can find that areas with high pollutant emissions (Hebei, Henan, Tianjin and Shandong Province) 

and areas with low pollutant emissions (Jiangsu, Zhejiang, Sichuan, Yunnan, Hainan, Guangdong and 

Guangxi) were located in the first and third quadrants. 

 

Table 4 Moran’s I statistics for China’s provincial SO2 and NOX emissions from 2011 to 2017. 

 SO2 NOX 

Year Moran's I z-value p-value Moran's I z-value p-value 

2011 0.242 2.333 0.018 0.280 2.650 0.011 

2012 0.193 1.916 0.042 0.267 2.544 0.013 

2013 0.187 1.859 0.046 0.249 2.402 0.019 

2014 0.176 1.763 0.050 0.248 2.403 0.018 

2015 0.193 1.919 0.042 0.260 2.502 0.014 

2016 0.117 1.325 0.097 0.155 1.606 0.055 

2017 0.096 0.112 0.136 0.185 1.878 0.042 
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Figure 6. Moran scatter plots of provinces with two air pollutant emissions. 

 

3.3 Hausman test and LM test for model selection 

To select the model (fixed-effect or random-effect models), we conducted the Hausman test. The test 

showed that the P values for SO2 and NOX were 0.0000542 and 0.005068, respectively. The models for 

both pollutants passed the significance level of 5%. Therefore, the fixed-effect model was selected.  

SO2 NOX 

2011 

2014 

2017 
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We then conducted the LM test. Table 5 shows that the LM-lag and LM-error tests for SO2 and NOx 

were close to 0, meaning that all models passed the significance level of 1%. Therefore, to further 

determine the models, we conducted the robust LM tests. The P value for the robust LM-error test passed 

the significance level of 1%, while the robust LM-error test did not. Therefore, the sample data are more 

suitable with the SLM models. 

 

Table 5. The result of LM test. 

 SO2 NOX 

SLM test 2.20×10-16 2.20×10-16 

SEM test 2.20×10-16 2.20×10-16 

robust SLM test 4.93×10-8 2.23×10-8 

robust SEM test 0.006358 1.019×10-7 

 

3.4 The effective factors of air pollution change 

From the Hausman tests and LM tests, the fixed-effect SLM was selected for all specifications. 

Moreover, in the fixed-effect models, we considered two model specifications: individual fixed effect 

and two-way fixed-effect (both individual and time period). Table 6 presents the results for both the 

individual fixed-effect and two-way fixed-effect estimations.  

For natural factors, we found that the coefficients for HDD is positive and significant. The CDD of SO2 

is negative and significant at the 5% level. And RHU were negative and statistically significant on the 

air pollutants emissions, which are consistent with the findings of previous studies (Bai et al., 2019; Li 

et al., 2014; Yang et al., 2017). In contrast, PRE has no significant effect on air pollutant emissions. 

Therefore, natural factors play an important role in the progress of air pollution and have also been 

confirmed from Zhang et al., (2015). They also point out that air pollution varies widely in different 

regions. Therefore, we also need to take effective measures to reduce air pollution in accordance with 

local actual conditions. In addition, we need to take into account our findings when determining 

predictions and pollution control measures related to air pollution, so as to improve the accuracy of 
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prediction of air pollution under different natural factors and provide effective measures to reduce 

pollution. 

 

Table 6 Results of SLM models of two air pollutants. 

Pollutant SO2 NOX 

Variable Individual FE Two-way FE Individual FE Two-way FE 

HDD 
33.240 

(1.229) 

54.815* 

(1.790) 

63.852*** 

(2.750) 

67.214** 

(2.564) 

CDD 
-502.817*** 

(-2.687) 

-400.565** 

(-1.978) 

84.075 

(0.525) 

67.473 

(0.389) 

PRE 
-97.381 

(-1.467) 

-64.266 

(-0.933) 

-85.684 

(-1.511) 

-70.039 

(-1.188) 

RHU 
-3965.412 

(-1.510) 

-5121.993* 

(-1.867) 

-7899.231***

(-3.519) 

-8377.583*** 

(-3.574) 

POP 
64.885*** 

(3.150) 

63.118*** 

(2.792) 

65.910*** 

(3.716) 

50.837*** 

(2.627) 

PCGDP 
-8.073*** 

(-3.408) 

-6.514*** 

(-2.633) 

-8.993*** 

(-4.443) 

-8.702*** 

(-4.111) 

SDA 
13.210* 

(1.836) 

12.144 

(1.585) 

22.960*** 

(3.732) 

26.233*** 

(4.002) 

URB 
7216.526** 

(2.011) 

3749.085 

(0.960) 

9699.814*** 

(3.157) 

8768.969*** 

(2.624) 

PD 
-80.444*** 

(-3.942) 

-89.757*** 

(-4.708) 

-48.232*** 

(-3.055) 

-57.665*** 

(-3.534) 

lambda 1.210 0.872 1.118 0.806 

Notes: Robust standard errors in parentheses; ⁎⁎⁎ p<0.01. ⁎⁎ p<0.05. ⁎ p<0.1. 

 

For socioeconomic factors, the results show that the POP is positive and statistically significant at the 

1% level for SO2 and NOX. This suggests that SO2 and NOX emissions increase as population increases. 

It is consistent with the findings of Liu et al., (2017). Furthermore, the URB is also positive and 

statistically significant with NOX, which means that as the URB increases, NOX emissions also increase. 

At present, China is still in the stage of rapid urbanization and the urban population is growing rapidly. Rapid 

urbanization is associated with more traffic, greater population size, more industry, and more energy 
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consumption, all of which lead to higher levels of air pollution (Zhao et al., 2018). However, the effect of 

PD for SO2 and NOX emissions were negative and statistically significant, which is consistent with the 

previous finding (Hao et al., 2016). We can find the answer from the literature (Cheng et al., 2017). 

Because the increase in PD can also produce the agglomeration effect by not only improving the 

utilization efficiency of public transportation and resources, but also by pollution agglomeration 

facilities, which then alleviates air pollution to some extent. Contrariwise, PD has a significant positive 

impact on air pollution both through the scale effect and the agglomeration effect (Cheng et al., 2017). 

From the viewpoint of scale effect, the higher the urban PD, the higher the housing, electricity, and 

transportation demand; all three are direct causes of air pollution (Cheng et al., 2017). In addition, high 

PD is not conducive to the diffusion of pollutants, and this indirectly aggravates the air pollution. From 

the estimates in this study, the externalities of the agglomeration effect have been fully exploited. These 

require that in the process of urban agglomeration construction, China should allow those positive 

externalities of population agglomeration that improve the efficiency of resources utilization and the 

environment to fully play themselves out, thereby effectively buffering the scale effect of population 

agglomeration on pollutant emissions (Cheng et al., 2017).  

In addition, SDA also plays a significant positive role in SO2 and NOX emissions. The higher the added 

value of the secondary industry, the more SO2 and NOX will be emitted. China is now at a stage of 

accelerated industrialization and urbanization, and energy consumption in secondary industry is much 

higher than that in other sectors. What is more serious is that most of the SO2 and NOX emissions come 

from the combustion of fossil fuels and industrial processes, and the large amount of pollutants produced 

by the consumption of fossil fuels are directly discharged into the air. These are also important reasons 

for aggravating air pollution, and it is suggested that China not only accelerate the adjustment and 

upgrade of industrial structure, but also promote the development of green industries. 

Finally, the estimated effect of PCGDP on SO2 and NOX were negative and statistically significant at 

the 1% level. Wang et al., (2016) pointed out that this has a lot to do with China's increased investment 

in reducing emissions of SO2 in flue gas and investment in methods to replace coal or high sulfur coal. 
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And he also found evidence in support of an inverted U-shaped curve relationship between economic 

growth and SO2 emissions. Therefore, in order to balance the relationship between environmental 

protection and economic development, effective economic leverage measures need to be implemented 

nationwide. 
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4. Conclusion and policy implication 

Along with China's rapid economic growth and high levels of energy consumption, the problem of air 

pollution has become one of the most important environmental problems to be solved urgently. In this 

study, we have innovated in using panel data to combine natural factors and socioeconomic factors. We 

aim to analyze the spatial effect and effective factors of air pollutant emissions to make better policy 

decisions from varies factors. We considered two types of air pollutant: SO2 and NOX. Using panel data 

of 31 provinces during the period from 2011 to 2017 to construct a spatial panel model to analyze the 

effect of natural (HDD, CDD, PRE, RHU) and socioeconomic factors (POP, PD, URB, PCGDP, SDA) 

on air pollution in China. We find that regional cooperation and optimizing industries have a great role 

in solving environmental problems. The primary conclusions are as follows. The emissions of two 

pollutants were on a downward trend. However, highly polluted areas were transferred from the south 

and southwest areas to north area. Nevertheless, air pollution has a significant and strong spatial 

autocorrelation. Furthermore, from the fixed-effect SLM, we found that HDD, POP, SDA and URB had 

positive and statistically significant impact on the air pollution emissions, while CDD, PCGDP, PD and 

RHU had significant negative effects. PRE had no significant effect. 

Having identified the key influencing factors and spatial effects of air pollution, we need to adopt more 

efficient air pollution prevention and control strategies to promote sustainable development. Based on 

the findings of this study, we propose the following two policy measures to reduce air pollution.  

1. Strengthening regional cooperation: The spatial autocorrelation of the two air pollutant emissions 

shows that each province and its neighbors could influence each other. Due to the geographical 

location and economic development of each province, the policy goals and capabilities of each 

province are also different. Therefore, we cannot only rely on one province for decrease air 

pollution. When considering the issue of mitigation of air pollution, the provinces should strengthen 

regional cooperation and joint governance. For example, Song et al., (2020) indicate that the 

expansion of the core area of air pollution joint prevention and control in Beijing-Tianjin-Hebei 

(BTH) region and surrounding areas is conducive to further improving regional air quality. 
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Specifically, while strengthening joint prevention and control between regions, we also need to 

establish an innovative pollution control and responsibility model, focusing on environmental 

planning and environmental legislation in urban agglomeration planning. 

2. Optimizing the industrial: As the secondary industry has a positive impact on pollutant emissions, 

optimizing the industrial structure will be particularly important. The production and consumption 

of energy, particularly fossil fuels are the predominant source of air pollution, the national energy 

control policy could affect the amount of air pollutant emissions. On the one hand, China should 

raise the environmental standards, environmental regulations, and pollutant discharge requirements 

of manufacturing companies, limit the rapid growth of energy-intensive and pollutant-intensive 

manufacturing, and gradually phase out backward production methods. At the same time, China 

should vigorously develop a circular economy and encourage the development of low carbon 

environmental protection industries. China should also establish a scientific, efficient, clean, and 

sustainable coal supply system. Through independent research, technology development and 

introduction, it should continuously improve the level of equipment technology and reduce the 

proportion of coal as the main energy source. The government should also vigorously develop new 

and renewable energy sources, strengthen the development and utilization of natural gas, and 

increase the proportion of the secondary industry.  

 

As a developing country, China has been plagued by air pollution for a long time. The results of this 

study can not only provide important insights to Chinese domestic policymakers, but also can provide 

valuable reference for other developing countries. While developing countries take measures to reduce 

pollutant emissions in socioeconomic terms, they also need to consider the effects of natural factors. At 

the same time, developing countries is now in the stage of accelerating industrialization and urbanization, 

and the energy consumption of the secondary industry is an important reason for exacerbating pollutant 

emissions. It is suggested that developing countries such as China should not only accelerate the 

adjustment and upgrade of industrial structure, but also promote the development of green industries. 
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There are still some deficiencies in this study. Although we used SLM in spatial econometric analyses, 

we have not analyzed spatial spillover effects between provinces. Other spatial econometric models may 

provide new insights for studying air pollution. In future research, we can continue to collect greater 

range of data to improve the study and more driving forces should be included in the model, such as 

topography and climate characteristics. 
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Appendix 

The Hausman test, LM test and spatial econometric models estimation in R are as follows: 

library(plm) 

library(splm) 

library(readxl) 

#DATA: 2011-2017 

data1 <- read_excel("Desktop/data1.xlsx") 

View(data1) 

pdata<-pdata.frame(data1,index=c("NUM","YEAR")) 

#model specification 

fm1<-SO2~POP+PCGDP+SDA+URB+PD+HDD+CDD+PRE+RHU 

###Spatial panel 

#Spatial weights 

#SWM 

W<-matrix(0,31,31) 

W[1,1:31]<-

c(0,0,0,0,0,0,0,0,0,0,0,0.166666667,0.166666667,0,0.166666667,0.166666667,0,0,0,0,0,0,0.16666666

7,0,0,0,0,0,0,0,0.166666667) 

W[2,1:31]<-c(0,0,0,0,0,0,0,0,0,0.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5,0,0,0,0) 

W[3,1:31]<-c(0,0,0,0,0,0,0,0.2,0,0,0,0,0.2,0.2,0,0,0,0,0,0,0,0.2,0,0,0,0.028571429,0,0,0,0,0) 

W[4,1:31]<-

c(0,0,0,0,0,0.333333333,0,0,0,0,0,0,0,0,0,0.333333333,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.333333333) 

W[5,1:31]<-

c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.166666667,0.166666667,0.166666667,0.166666667,0,0,0,0.166

666667,0,0.166666667,0,0,0) 

W[6,1:31]<-c(0,0,0,0.2,0,0,0.2,0,0.2,0,0,0,0,0.2,0,0.2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 



38 

W[7,1:31]<-c(0,0,0,0,0,0.2,0,0.2,0.2,0,0,0,0,0.2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2,0) 

W[8,1:31]<-c(0,0,0.2,0,0,0,0.2,0,0,0,0,0,0,0.2,0,0,0,0,0,0,0,0,0,0,0,0.2,0,0,0,0.2,0) 

W[9,1:31]<-c(0,0,0,0,0,0.5,0.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

W[10,1:31]<-

c(0,0.142857143,0,0,0,0,0,0,0,0,0,0.142857143,0,0,0,0,0,0.142857143,0.142857143,0,0,0,0.14285714

3,0,0.142857143,0,0.142857143,0,0,0,0) 

W[11,1:31]<-c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5,0,0.5,0,0,0,0,0,0,0,0,0,0,0,0) 

W[12,1:31]<-

c(0.166666667,0,0,0,0,0,0,0,0,0.166666667,0,0,0.166666667,0,0,0,0,0,0,0,0,0.166666667,0.16666666

7,0,0.166666667,0,0,0,0,0,0) 

W[13,1:31]<-

c(0.166666667,0,0.166666667,0,0,0,0,0,0,0,0,0.166666667,0,0.166666667,0,0.166666667,0,0,0,0,0,0.

166666667,0,0,0,0,0,0,0,0,0) 

W[14,1:31]<-

c(0,0,0.166666667,0,0,0.166666667,0.166666667,0.166666667,0,0,0,0,0.166666667,0,0,0.166666667

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

W[15,1:31]<-c(0.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25,0.25,0,0,0,0,0,0,0.25) 

W[16,1:31]<-

c(0.166666667,0,0,0.166666667,0,0.166666667,0,0,0,0,0,0,0.166666667,0.166666667,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0.166666667) 

W[17,1:31]<-

c(0,0,0,0,0,0,0,0,0,0,0.333333333,0,0,0,0,0,0,0.333333333,0.333333333,0,0,0,0,0,0,0,0,0,0,0,0) 

W[18,1:31]<-

c(0,0,0,0,0,0,0,0,0,0.333333333,0,0,0,0,0,0,0.333333333,0,0.333333333,0,0,0,0,0,0,0,0,0,0,0,0) 

W[19,1:31]<-

c(0,0,0,0,0.125,0,0,0,0,0.125,0.125,0,0,0,0,0,0.125,0.125,0,0.125,0,0.125,0,0,0.125,0,0,0,0,0,0) 
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W[20,1:31]<-

c(0,0,0,0,0.333333333,0,0,0,0,0,0,0,0,0,0,0,0,0,0.333333333,0,0,0.333333333,0,0,0,0,0,0,0,0,0) 

W[21,1:31]<-c(0,0,0,0,0.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25,0,0.25,0.25,0,0) 

W[22,1:31]<-

c(0,0,0.125,0,0.125,0,0,0,0.125,0,0,0,0.125,0,0,0,0,0,0.125,0.125,0,0,0,0,0.125,0.125,0,0,0,0,0) 

W[23,1:31]<-c(0.25,0,0,0,0,0,0,0,0,0.25,0,0.25,0,0,0.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

W[24,1:31]<-c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5) 

W[25,1:31]<-c(0,0,0,0,0,0,0,0,0,0.25,0,0.25,0,0,0,0,0,0,0.25,0,0,0.25,0,0,0,0,0,0,0,0,0) 

W[26,1:31]<-

c(0,0,0.142857143,0,0.142857143,0,0,0.142857143,0,0,0,0,0,0,0,0,0,0,0,0,0.142857143,0.142857143,

0,0,0,0,0,0,0.142857143,0.142857143,0) 

W[27,1:31]<-c(0,0.5,0,0,0,0,0,0,0,0.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

W[28,1:31]<-

c(0,0,0,0,0.333333333,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.333333333,0,0,0,0,0,0,0.333333333,0,0,0) 

W[29,1:31]<-c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25,0,0,0,0,0.25,0,0.25,0,0.25,0) 

W[30,1:31]<-c(0,0,0,0,0,0,0.25,0.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25,0,0,0.25,0,0) 

W[31,1:31]<-c(0.2,0,0,0.2,0,0,0,0,0,0,0,0,0,0,0.2,0.2,0,0,0,0,0,0,0,0.2,0,0,0,0,0,0,0) 

W 

SWM= mat2listw(W) 

#Test 

#Hausman: Choose Fixed effects model or Random effect model 

test3<-sphtest(fm1, data = pdata, index=NULL,listw = SWM, spatial.model = "error", method = "GM") 

test3 

#LMtest 

LMLag<-slmtest(fm1,data=pdata,listw=mat2listw(W), test="lml") 

LMLag 
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LMRLag<-slmtest(fm1,data=pdata,listw=mat2listw(W), test="rlml") 

LMRLag 

LMerror<-slmtest(fm1,data=pdata,listw=mat2listw(W), test="lme") 

LMerror 

LMRerror<-slmtest(fm1,data=pdata,listw=mat2listw(W), test="rlme") 

LMRerror 

#Fixed effects model SLM 

#Individual 

model75<-spml(fm1,data=pdata,listw=SWM,model="within",effect="individual", 

              spatial.error="none",lag=TRUE) 

summary(model75) 

#Two-way 

model76<-

spml(fm1,data=pdata,listw=SWM,model="within",effect="twoways",spatial.error="none",lag=TRUE) 

summary(model76) 

#NOX：fm2 instead of fm1 loop 

fm2<-NOX~POP+PCGDP+SDA+URB+PD+HDD+CDD+PRE+RH
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