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Abstract: The enhancement of the carbon trading mechanism signifies a gradual transition in China’s
environmental regulatory framework, shifting from a command and control approach to a market-
based incentive model. Despite the significance of this shift, existing research has insufficiently
explored the impact of market-oriented environmental policies on consumption-based emissions.
This study leverages the carbon trading policies implemented in 2013 as a quasi-natural experiment,
combined with a precise measurement of urban and rural household carbon emissions (HCE) during
2005–2021. Employing a difference-in-differences method, we evaluate the heterogeneous impact of
these policies on urban and rural HCE. The results demonstrate a significantly negative effect of the
policies on indirect HCE, a conclusion that remains robust across various placebo and robustness
tests. Furthermore, we identify the transmission mechanisms through which carbon trading policies
affect the reduction in HCE. The results indicate that the policy has a significant negative impact on
indirect HCE, with a notable urban–rural difference. The effect of the policy is −0.829 for urban areas
and −0.365 for rural areas, a conclusion that remains robust across various placebo and robustness
checks. Additionally, we identified two transmission mechanisms through which carbon trading
policies operate: financial deepening and employment effects. Lastly, we found that carbon trading
policies can reduce carbon inequality between urban and rural areas by 46.8%.

Keywords: market-oriented environmental policies; carbon trading; household consumption;
CO2 emissions; rural–urban disparity

1. Introduction

The United Nations Sustainable Development Goals (SDGs), particularly
goal 13 (climate action), emphasize the urgent need to take action to mitigate climate
change and promote sustainable development. Carbon trading, by establishing a market
mechanism for reducing greenhouse gas emissions (GHGs), provides a key policy tool
for achieving these goals. Therefore, implementing carbon trading policies is essential
for balancing economic development with environmental management and promoting a
transition to a more sustainable economy. As global climate change intensifies, China faces
mounting pressure to reduce emissions both domestically and internationally. Being the
largest developing country globally and a significant contributor to GHGs, China’s carbon
dioxide (CO2) emissions from fuel combustion reached 10,648 MtCO2 in 2021, making it the
highest globally. The Chinese government formally committed to its “dual carbon” goals
in September 2020: achieving peak CO2 emissions by 2030 and carbon neutrality by 2060.

GHGs from production are driven by consumer demand along the supply chain, with
developed countries exhibiting a higher share of consumption-based emissions relative to
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production-based emissions [1]. In China, household consumption accounts for approx-
imately 26% of total energy use and 30% of CO2 emissions [2]. From the perspective of
sectoral CO2 emissions, housing is a significant contributor, with emissions concentrated
in the building sector. The residential buildings in China face growing demand for home
energy services [3], which necessitates large amounts of primary energy (e.g., coal) and
secondary energy (e.g., electricity), leading to substantial CO2 emissions from domestic
buildings [4]. Many scholars argue that the potential for emission reductions in residential
buildings is considerable. Zhou et al. (2018) emphasized that improving building energy
efficiency holds significant practical value in reducing CO2 emissions [5]. Cha et al. (2024)
proposed optimizing heating, ventilation, and air conditioning (HVAC) systems to reduce
household carbon footprints, while also highlighting the great potential of integrating
renewable energy in the household sector [6]. Additionally, the efficiency of the HVAC sys-
tem is significantly impacted by the performance of variable refrigerant flow (VRF) systems.
Based on performance and metrics, such as accuracy, precision, sensitivity, computation
time, and the confusion matrix, Es-sakali et al. (2024) validated that the CACMMS (Cloud
Air Conditioning Monitoring and Management System), which incorporates advanced fault
detection and diagnosis strategies in a real-world building, is effective in addressing faults
in VRF systems and enhancing the overall efficiency of HVAC systems [7]. Furthermore,
Chen et al. (2023) contended that fault detection and diagnostics are essential to ensuring
the reliable operation of HVAC systems and preventing energy waste [8]. Therefore, re-
ducing CO2 emissions linked to household consumption is crucial for expanding carbon
reduction efforts under China’s dual-carbon goals [9].

Economic disparities between urban and rural regions are obvious in income levels,
lifestyle choices, consumption structures, and other factors [10], leading to significant
differences in the CO2 emissions generated from household consumption. The rapid
urbanization in China has fueled income growth and the increasing concentration of
energy-intensive sectors in cities, resulting in more carbon-intensive lifestyles among
urban households. In 2012, urban households, which made up 53% of the population,
were responsible for 75% of national household CO2 emissions (HCE) [11]. Rural house-
hold consumption has also expanded, with rural per capita consumption increasing from
6991 yuan in 2010 to 13,713 yuan in 2020, reflecting a growth rate of 1.96 times. However,
rural households exhibit distinct consumption patterns: a higher proportion of their spend-
ing goes toward basic needs, and their energy consumption relies more on traditional
energy sources.

The emergence of carbon trading is a critical response to the global climate crisis,
serving as a key tool for advancing global climate governance and promoting low-carbon
development worldwide [12,13]. The fundamental principle of carbon trading involves the
transfer of CO2 emission permits, treated as a scarce resource, thereby raising the cost of
emissions and promoting reduction efforts. China began developing its carbon trading
market in 2011, launching operations in 2013, and transitioning from regional pilots to a
national carbon market in 2021 [14]. Currently, China’s carbon trading market primarily en-
compasses major emission-intensive sectors, including petrochemicals, chemicals, building
materials, steel, and power generation. Carbon trading facilitates reduce emissions in these
sectors by optimizing energy use, lowering carbon intensity, and fostering technological
innovation [15]. However, when emission costs are incorporated into production costs,
businesses often pass a portion of these costs onto consumers. In this way, carbon trading
indirectly affects household consumption patterns by influencing the pricing mechanism
and the supply–demand dynamics of energy and commodities, ultimately impacting HCE.

The success of carbon trading policies in lowering high-carbon emissions is vital for
meeting China’s dual carbon targets. The purpose of this study is to comprehensively
assess the impact of market-oriented environmental policies on HCE from both urban
and rural household in China. Using the carbon trading policies introduced in 2013 as a
quasi-natural experiment and accurately measuring urban and rural HCE from 2005 to
2021, we employ the difference-in-differences (DID) method to estimate the heterogeneous
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effects of these policies on HCE. First, utilizing a recalculated provincial HCE dataset that
distinguishes between urban and rural areas, we extend the scope of carbon trading policies
to the consumption side. Second, we aim to clarify the transmission mechanisms through
which carbon trading policies affect HCE, while also investigating the heterogeneity of
these effects on the supply side and demand side. Finally, given the potential inequality
in policy outcomes caused by China’s urban–rural dual structure, we explore disparities
in the effect of carbon trading policies across regions. Understanding the effectiveness of
carbon trading policy in mitigating consumption-based emissions can offer fresh insights
for the formulation of governmental environmental policies. In addition, by addressing
regional carbon inequality, this study contributes to the broader research on equitable
carbon reduction strategies.

This study provides multiple marginal contributions to the understanding of sus-
tainable development under China’s dual carbon goals and the field of environmental
economics. First, we recalculate the most recent provincial-level CO2 emission dataset for
urban and rural household consumption, identifying and verifying the carbon reduction
effect of carbon trading policies on consumption-based emissions. To date, most evalua-
tions of carbon trading policies have focused on production-based emissions, with little
attention paid to their impact on the consumption side [16,17]. This study extends the
impact boundary of carbon trading policies to the consumption side, significantly enriching
and broadening the literature on environmental policy impact assessments. Second, this
study reveals the transmission process and mechanisms through which carbon trading
policies reduce HCE, examining the heterogeneity of market-based environmental policies
on both the supply and demand sides. This provides valuable insights for the government
in further broadening the scope of environmental policy. Third, from the perspective of
China’s urban–rural dual structure, this study innovatively explores the differences in the
intensity of carbon trading policies’ impact on HCE between urban and rural areas. Previ-
ous research has mainly focused on the single effect of carbon trading policies, neglecting
the potential policy inequality that may arise from urban–rural differences. This study
deepens the understanding of carbon trading policies and introduces a new perspective for
addressing regional carbon inequality

The structure of this paper is as follows: Section 2 provides a comprehensive review of
the relevant literature; Section 3 outlines the empirical strategy and data selection. Section 4
discusses the main findings. Section 5 provides conclusions with policy implications.

2. Literature Review
2.1. Urban and Rural HCE

Economic and demographic factors are widely recognized as having a significant
impact on HCE [18]. Among these factors, the urban–rural divide is considered crucial in
shaping HCE patterns in China [19–21]. Urban and rural areas, as the two primary spatial
units of socio-economic development, are often the main basis for analyzing the impact of
these influencing factors on CO2 emissions from household consumption [22,23]. Notably,
Cao et al. (2019) and Li et al. (2015) have identified that urban households contribute the
majority of CO2 emissions generated from the consumption side [24,25]. Clarke et al. (2017)
further observed that indirect CO2 emissions caused by the non-energy goods and services
were significantly higher than direct CO2 emissions from energy use [26]. In contrast,
the CO2 emissions of rural household consumption displays distinct characteristics and a
substantial scale compared to urban areas [27]. Liu et al. (2023) estimated the rural HCE at
the provincial level, finding that housing expenditure and direct CO2 emissions accounted
for 62% of the increase in rural HCE [28]. Moreover, the development gap between urban
and rural areas has led to significant disparities in household carbon footprints. Gao et al.
(2023) highlighted the inequality in carbon footprints between urban and rural households
in China, showing that urban regions tend to exhibit higher carbon and energy footprints,
alongside greater inequality, compared to rural regions [29].
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2.2. Carbon Trading and Emissions

In the literature on carbon trading policy evaluation, most studies using macro-
level data have focused primarily on production-based emissions from enterprises. Both
Wang et al. (2022) and Zhang et al. (2020) demonstrated, through theoretical and empirical
analyses, that carbon trading policies can effectively mitigate CO2 emissions, contributing
to the goal of carbon neutrality [30,31]. Furthermore, scholars have suggested that car-
bon trading policies positively affect total factor productivity [32], low-carbon economic
growth [33], green innovation [34], poverty alleviation [35], political mobility [16], and
carbon market efficiency [12]. Nevertheless, a significant portion of the existing literature
on carbon trading has primarily focused on production-based emissions, with limited
attention given to consumption-based emissions on the demand side. For example, Chen
and Lin (2021) assessed the policy effectiveness of carbon trading on CO2 emissions during
the production process [36]; Yu et al. (2024) evaluated the causal effect of carbon trading
schemes on the CO2 emission efficiency of large thermal power plants in China [37]; and
Hu et al. (2024) quantified the effects of emission trading schemes on energy-related CO2
emissions in China. Their findings consistently suggest that carbon trading significantly
enhances carbon and energy performance [38].

2.3. China’s Policies and HCE

While there is limited research directly addressing the impact of carbon trading poli-
cies on HCE, existing studies provide valuable insights into how other relevant policies in
China influence HCE. This review provides an in-depth analysis of the latest findings in the
field. For instance, Wu (2022) estimated the effect of China’s smart city policy on household
daily consumption-related CO2 emissions [39]. Du et al. (2024) examined how the digital
economy affect the HCE, using the DID approach as a robustness test [40]. Wei et al. (2024)
utilized micro-survey data to evaluate the effect of pro-poor policies on HCE, conclud-
ing that such policies effectively mitigate carbon inequality across income groups [41].
Wang et al. (2024) argued that price policies can reduce consumption inequality and lower
CO2 emissions, highlighting the differing effects of these policies across different income
brackets and spatial contexts [42]. Moreover, Li et al. (2024) evaluated the effectiveness of
China’s carbon inclusion policy, an innovative voluntary emission reduction mechanism,
on HCE, showing that the policy significantly lowered HCE [43].

From this review, it is clear that limited attention has been given to the impact of
carbon trading policies on consumption-based emissions, particularly in the context of
the urban–rural dual structure in China. This research aims to address this gap by in-
vestigating the differential impacts of a market-oriented environmental policy—carbon
trading—on HCE in urban and rural settings. In doing so, we not only explore the
policy’s effectiveness in mitigating carbon emissions but also examine the transmission
mechanisms through which these policies affect households in varying socio-economic
contexts. By focusing on the urban–rural divide, we contribute to the growing discourse
on carbon inequality, shedding light on how environmental policies can both mitigate
and exacerbate existing socio-economic disparities. The schematic diagram of this study
is as follows (Figure 1).
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Figure 1. The study schematic diagram.

3. Methodology and Data

Leveraging household consumption data, we first recalculated HCE across all provin-
cial administrative units. Subsequently, employing the DID approach, we evaluated the
heterogeneous impacts of carbon trading policies on HCE, with a particular focus on
rural–urban disparities.

3.1. The Estimation of HCE

HCE can be divided into two distinct categories: direct and indirect. Direct HCE is gen-
erated from energy consumption activities within households, such as cooking and space
heating. Indirect HCE, on the other hand, originates from non-energy consumption, where
the associated CO2 emissions occur during the production stages rather than during their
use. Accordingly, we have conducted separate estimations for direct and indirect HCE.

3.1.1. Direct HCE by Emission Inventory Method

The fundamental principle of the emission inventory method is that the CO2 emissions
generated by a certain energy source are primarily determined by the emission levels
(e.g., energy consumption amount) and emissions coefficients [44]. Most studies typically
follow the emission inventory method recommended by the Intergovernmental Panel on
Climate Change (IPCC) in the 2006 National Greenhouse Gas Inventory Guidelines to
calculate direct HCE.

The formula of emission factor accounting method is as follows:

DICs
r =

n

∑
i=1

Ei × Fsr
i (1)

DICs
u =

n

∑
i=1

Ei × Fsu
i (2)

Ei = NCVi × CCi × OFi ×
44
12

(3)

where DICs
r and DICs

u denote the direct HCE of rural and urban areas in s province,
respectively; Ei represents the CO2 emissions coefficient of i energy; Fsr

i and Fsu
i refer to the

consumption of energy i in rural and urban areas of s province; NCVi is the low calorific
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value of energy i; CCi is the carbon content per unit calorific value of energy i; OFi is the
carbon oxidation rate of energy i; i = 1 . . . 17 energy types; s = 1 . . . 30 provinces. The
related information of energy included in household consumption is shown in Table 1.

Table 1. CO2 emission coefficients by energy type.

Energy Type Average Low Calorific Value
(KJ/kg; KJ/m3)

Carbon Content
(kg-C/GJ) Oxidation Rate

Raw Coal 20908 25.80 0.94
Cleaned Coal 26344 25.41 0.93

Other Washed Coal 8363 25.41 0.90
Briquettes 15906 33.60 0.90

Coke 28435 29.50 0.93
Coke Oven Gas 16726 12.10 0.99

Other Gas 3763 70.80 0.99
Other Coking Products 34324 29.50 0.93

Crude Oil 41816 20.10 0.98
Gasoline 43070 18.90 0.98
Kerosene 43070 18.90 0.98
Diesel Oil 42652 20.20 0.98
Fuel Oil 41816 21.10 0.99

Liquefied petroleum gas 50179 17.20 0.98
Refinery Gas 45998 15.70 0.98

Other Petroleum Products 37623 20.00 0.98

Note: IPCC guidelines for national GHG emissions inventory.

3.1.2. Indirect HCE by the Consumer Lifestyle Approach (CLA)

The core concept of the CLA, as introduced by Bin and Dowlatabadi (2005) [45],
involves breaking down all elements of a household’s lifestyle into individual components.

CLA is a consumer-oriented methodology that thoroughly evaluates energy use
and CO2 emissions. It integrates emission coefficients with consumption expenditure
to calculate consumption-based emissions. In recent years, this method has been fre-
quently employed to analyze CO2 emissions associated with household consumption
in China [27,40,46].

The China Statistical Yearbook provides comprehensive statistical data on household
consumer behavior, organized into eight distinct categories, with each category comprising
several related sectors (Table 2). Additionally, this study utilized the average annual
household consumption expenditure to calculate indirect HCE. It is important to note
that the provincial statistical yearbooks do not further disaggregate the eight categories
into sectoral data; thus, this study can only evaluate the indirect HCE in terms of the
respective total expenditures on these eight categories. Based on the provincial energy
consumption inventory, this study estimated the industrial direct CO2 emissions across
provinces. By integrating these data with the value-added metrics of every economic sector,
we subsequently calculated the carbon intensity across consumption classification.

Table 2. Household consumption categories and corresponding sectors.

Consumption Categories Corresponding Industries

Food Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy; Food
Processing; Food Production; Beverage Production

Clothing Textile Industry; Garments and Other Fiber Products; Leather, Furs, Down, and
Related Products

Residence
Construction; Nonmetal Mineral Products; Metal Products; Electric Power, Steam

and Hot Water Production and Supply; Gas Production and Supply; Tap Water
Production and Supply
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Table 2. Cont.

Consumption Categories Corresponding Industries

Household facilities, articles, and services Timber Processing, Bamboo, Cane, Palm and Straw Products; Furniture
Manufacturing; Rubber and Plastic Products; Electric Equipment and Machinery

Transport and communication services Transportation Equipment; Electronic and Telecommunications Equipment;
Transport, Storage, Postal, and Telecommunications Services

Education, cultural, and recreation services Papermaking and Paper Products; Printing and Record Medium Reproduction;
Cultural, Educational, and Sports Articles

Medicine and medical services Medical and Pharmaceutical Products
Miscellaneous commodities and services Tobacco Processing; Wholesale, Retail Trade and Catering Service

According to the corresponding relationship in Table 2, the indirect HCE from rural
and urban household consumption are estimated in the following manner:

INCs
r =

n

∑
j

(
CIj × PCEsr

j

)
× RNs (4)

INCs
u =

n

∑
j

(
CIj × PCEsu

j

)
× UNs (5)

CIj =
Cj

Vj
(6)

where INCs
r and INCs

u refer to the indirect HCE, respectively; CIj denotes the carbon
intensity of the consumption j; PCEsr

j and PCEsu
j are the per capita household consumption

of category j in rural and urban areas in s province; RNs and UNs denote the number
of rural and urban households in s province; Ci denotes the total CO2 emissions from
industries within category j; and Vj represents the aggregate value added by the industries
within category j.

3.2. Estimation Strategy
3.2.1. DID Approach

Given the widespread application of the DID approach in policy effect evaluation [47,48],
we developed a DID model to examine how the carbon trading policy influences HCE. We
treat the carbon trading pilot launched in 2013 as an independent “natural experiment”,
categorizing the provinces involved in the pilot as the treatment group and those not
involved as the control group. The impact of the policy is assessed through the differences
in outcomes between these two groups both prior to and following the implementation
of the pilot. Additionally, we included several control variables in the model to account
for potential “noise” factors, thereby partially alleviating the challenges associated with
non-random assignment inherent in quasi-natural experiments.

The standard DID model can be represented in the following estimation form:

Yst = α + βtreats ∗ Tt + δControlst + γt + µs + εst (7)

where s represents the province; t indicates the year; and Yst represents either the rural
HCE or the urban HCE. If a province s is part of the carbon trading pilot, then treats = 1;
otherwise, treats = 0. Tt is a dummy variable, where Tt = 1 indicates all years after the
policy implementation, otherwise Tt = 0. Controlst is the control variable; α serves as
the intercept. µs represents the province fixed effects, which account for all time-invariant
characteristics that may influence the outcome variable. γt represents the year fixed effects,
which control for general shocks that may occur in a specific year; εst is the random error
component, characterized by independent and identically distributed properties. After taking
the conditional expectation of Equation (7), the coefficient β represents the policy effect.
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3.2.2. Common Trend Testing and Policy Dynamic Effects

The assumption of common trends is essential for the DID model to accurately identify
causal effects. As it is impossible to observe the counterfactual scenarios for the group
receiving the treatment after the intervention, researchers often verify the parallel trend
assumption indirectly. This is accomplished by analyzing whether the pre-treatment trends
of observable variables in both the treated and control groups exhibit a similarity. This
study examines the pre-treatment balance trend and the post-treatment dynamic effects by
formulating the following equation:

Yst = α + ∑TD−2
p=1 β

pre
p treats ∗ Tp

t + ∑T
p=TD

β
post
p treats ∗ Tp

t + δControlst + γt + µs + εst (8)

where treats is the treatment indicator variable, and Tp
t represents the time dummy variable

for period p. β
pre
p and β

post
p can be intuitively understood as the differences in the outcome

variable Yst in period p. To address potential collinearity issues, this study established the
year before the implementation of the carbon trading policy, specifically 2012, as the baseline
period. Thus, the validity of pre-treatment parallel trends can be indirectly assessed by
testing whether β

pre
p is significantly different from zero. β

post
p represents the policy effects

in different periods after the policy implementation and was used to discuss the dynamic
effects of the policy.

3.2.3. Propensity Score Matching–Difference in Differences Model (PSM-DID)

While the DID model does not require a similarity between treatment and control groups
across all dimensions, non-randomness may arise if certain pre-treatment characteristics
related to the outcome variable are imbalanced between these groups. In such cases, the
common trend assumption may not serve as effective empirical evidence [49]. To address
potential endogeneity issues stemming from selection bias, we utilized the PSM technique to
identify appropriate control groups from provinces that did not participate in the pilot study
prior to applying the DID model. We choose the logit model to estimate the parameters:

Ps = P(s = treat|Controlst) (9)

where Controlst is a matching variable that can influence the probability of a province
being selected into the treatment group. Its definition is consistent with the above. After
excluding provinces with matching failure, the treatment group and control group are more
likely to align the equilibrium trend assumption, which in turn attenuates bias and ensures
the randomness of the policy implementation.

3.2.4. Mechanism Test Model

Accurate identification of conduction mechanisms is difficult in the DID analysis
framework. Thus, we draw on the research framework of Chen et al. (2020) [50] to identify
the mechanisms through which policies impact HCE. We first find the mechanism variable
Mst based on the theoretical analysis after which we set up the regression equation:

Mst = α + ρtreats ∗ Tt + δControlst + γt + µs + εst (10)

We determine whether the conduction mechanism exists by testing the significance
of the coefficient ρ. To further discuss the different moderating effects of the mechanism
variable Mst on HCE in rural and urban areas, we establish a combined term that reflects
the relationship between the policy and mechanism variables. The regression model is
specified as follows:

Yst = α + θtreats ∗ Tt ∗ Mst + βtreats ∗ Tt + φMst + δControlst + γt + µs + εst (11)

where θ is the moderating effect that we focused on.
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3.3. Variables and Data
3.3.1. Dependent Variables

Our explanatory variable is per capita HCE. Based on the calculations in Section 3.1,
we further divide per capita HCE into per capita rural total HCE(RtHCE) and per capita
urban total HCE(UtHCE), total direct HCE (TdHCE) and total indirect HCE (TiHCE), and
rural indirect HCE (RiHCE) and urban indirect HCE (UiHCE).

3.3.2. Independent Variables

The primary variable of interest is the cross-multiplier variable treats ∗ Tt, denoted by
DID. If region s implements the carbon trading policies at time t, then DID = 1; otherwise,
DID = 0. In this study, the provinces of Beijing, Chongqing, Tianjin, Hubei, Shanghai, and
Guangdong are identified as the intervention group, with 2013 set as the year when the
policy impact commenced for these pilot regions.

3.3.3. Control Variables

To address potential endogeneity issues and various factors that may simultaneously
influence urban and rural HCE, we identified a set of provincial-level control variables that
may influence the results of the regression analysis. Drawing on the studies [32,51–54], we
identified six control variables as follows:

• Per capita GDP: Measured by real per capita GDP (2000 constant price).
• Openness: Characterized as the proportion of total imports relative to GDP, serving as

an indicator of the region’s trade integration.
• Per capita fixed capital stock: Determined through the perpetual inventory approach

for the fixed capital stock in the region (2000 constant price). The assumptions for
capital depreciation and growth rates are based on Zhang (2008) [55].

• Government expenditure: Expressed as a percentage of regional fiscal expenditures in
relation to GDP.

• Urbanization: Defined as the fraction of the urban population compared to the
total population.

• Natural endowment: Measured by the area of nature reserves.

3.3.4. Data

The analysis focused on macroeconomic data from 30 provinces in China for the
years during 2005–2021. Due to data limitations, Tibet, Hong Kong, Macao, and Taiwan
were excluded from the research. Household consumption data of direct energy were
derived from the provincial energy consumption inventory [56] and China Energy Statistical
Yearbook [57]. Statistical data concerning consumer behavior were gathered from the
provincial yearbooks and reports. Industrial direct energy consumption data came from
the provincial energy consumption inventory. The added value of industrial products
was taken from China’s industry statistical yearbook [58]. Table 3 presents the descriptive
statistics for all variables analyzed in the study.

Table 3. Descriptive Statistics.

Symbol Variables Definition

Treatment Group
(N = 102)

Control Groups
(N = 408)

Mean S.D. Mean S.D.

Ex
pl

ai
ne

d
Va

ri
ab

le
s RtHCE Rural total HCE by person 0.996 0.489 1.143 0.824

UtHCE Urban total HCE by person 1.537 0.722 2.027 1.425
TdHCE Total direct HCE by person 0.897 0.453 0.563 0.288
TiHCE Total indirect HCE by person 1.636 0.894 2.606 2.076
RiHCE Rural indirect HCE by person 0.523 0.237 0.876 0.703
UiHCE Urban indirect HCE by person 1.113 0.682 1.731 1.392



Sustainability 2024, 16, 9715 10 of 25

Table 3. Cont.

Symbol Variables Definition

Treatment Group
(N = 102)

Control Groups
(N = 408)

Mean S.D. Mean S.D.

C
on

tr
ol

Va
ri

ab
le

s Per capita GDP Per capita GDP (2000 constant price) 2.164 1.194 0.969 0.346
Openness Total goods imports as a percentage of GDP 0.738 0.520 0.186 0.170

Government expenditure Government expenditure as a percentage of GDP 0.182 0.040 0.237 0.106
Urbanization Urban population as a percentage of the total population 0.737 0.145 0.516 0.102

Per capita fixed capital stock Fixed capital stock by person (2000 constant price) 4.337 3.527 3.684 3.282
Nature endowment Total area of Nature Reserve 80.657 96.248 426.047 604.049

4. Results and Discussion
4.1. Characteristics of HCE Composition

We employed MATLAB 2023a software to estimate provincial-level consumption-
based CO2 emissions in China. The results indicate that HCE in China has exhibited a
sustained growth trend from 2005 to 2021, aligning with China’s rapid increase in consumer
consumption driven by the continuous expansion of domestic demand (Figure 2). Notably,
significant changes in HCE occurred around 2013, 2017, and 2019.
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Figure 2. HCE by rural/urban areas and direct/indirect sources during 2005–2021.

Following 2013, a marked increase in HCE was primarily attributable to the inclusion
of imputed rent for self-owned housing in urban household consumption, while the
imputed rent for rural households remained zero (Table 4). After 2017, however, the
growth rate of HCE slowed. This deceleration can be partially explained by the upgrading
of household consumption patterns, influenced by the “2018–2020 Implementation Plan
for Improving the Consumption Promotion System and Mechanism” [59]. Additionally,
the nationwide promotion of carbon trading pilots, which began in 2017, has effectively
reflected enterprise-side carbon reductions in HCE through the market circulation of goods.
Moreover, urban households account for the majority of total HCE, with indirect HCE
significantly exceeding direct HCE in terms of its contribution.
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Table 4. Baseline regression analysis for HCE.

Variables
(1) (2) (3) (4)

RtHCE UtHCE TdHCE TiHCE

DID −0.477 *** −0.393 *** 0.023 −0.893 ***
(0.065) (0.108) (0.038) (0.142)

Time fixed effects Control Control Control Control
Province fixed effects Control Control Control Control

Observations 510 510 510 510
R-squared 0.807 0.793 0.847 0.794

Robust standard errors are presented in parentheses. Significance levels are indicated as follows: *** p < 0.01.

4.2. Policy Effect Estimation
4.2.1. Baseline Regression

We employed Stata 16.0 software to estimate the results of the DID regression. We
first assessed the impact of carbon trading policies on reducing CO2 emissions without
incorporating control variables. The regression analysis revealed that the coefficients
for rural and urban HCE in relation to the policy variable (DID) were −0.48 and −0.39,
respectively. Both coefficients were statistically significant at the 1% level, as shown in
Table 4, columns 1 and 2.

We then analyzed the effects from the perspective of direct and indirect HCE. The results
revealed that the policy effect on direct HCE was not significant, whereas the regression
coefficient for indirect HCE was significantly negative (Table 4, columns 3 and 4). As of 2021,
China’s carbon trading market primarily encompassed eight key industries (including
petrochemical, chemical, building materials, steel, non-ferrous metal, papermaking, power,
and aviation industries). Direct HCEs are mainly associated with sectors that were not fully
included in carbon trading policies. For example, the proportion of direct HCE in rural
areas is relatively high, predominantly stemming from coal and briquettes. Notably, the
coal industry was not included in the early stages of the carbon trading market. Moreover,
household energy demand is more sensitive to price factors, which are influenced by the
dynamics of energy supply and demand. While carbon trading policies have contributed
to optimizing the energy structure of household consumption to some extent, it remains
challenging to fully shift household dependence on conventional energy sources in the
short term. In contrast, indirect HCEs are determined by the carbon intensity of production
across industries, which is more directly impacted by the trading of emission rights under
carbon trading policies. Therefore, the estimated policy effects better capture the causal
relationship for indirect HCE compared to direct HCE.

Table 5 illustrates the impact of carbon trading policies on indirect HCE. The regression
results in columns 1 and 3 are estimated without control variables, incorporating only fixed
effects for time and province. The results indicate that carbon trading policies have a
substantial impact in reducing indirect HCE, with the effect being statistically significant at
the 1% level. Incorporating control variables, columns 2 and 4 provide further evidence
that the regression coefficients remain negative and, thus, emphasizes the clear urban–rural
disparities. For instance, the carbon reduction effect is more pronounced for households in
urban areas (−0.839) compared to those in rural areas (−0.365).

Generally, per capita GDP, openness, per capita fixed capital stock, and natural endow-
ment all exhibit significant negative effects on indirect HCE. The impact of urbanization on
rural HCE is insignificant; however, it plays a notable role in curbing HCE growth in urban
areas. In regions with higher rates of urbanization, urban development tends to priori-
tize ecological sustainability. Additionally, in areas with higher government expenditure,
household income can increase through transfer payments, which may ultimately drive
higher HCE.
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Table 5. Baseline regression analysis of indirect HCE.

Variables
(1) (2) (3) (4)

RiHCE RiHCE UiHCE UiHCE

DID −0.356 *** −0.365 *** −0.537 *** −0.839 ***
(0.043) (0.048) (0.108) (0.111)

Government expenditure 2.173 *** 5.055 ***
(0.632) (1.255)

Per capita fixed capital stock −0.072 *** −0.121 ***
(0.010) (0.021)

Openness −0.546 *** −1.517 ***
(0.129) (0.306)

Per capita GDP −0.614 *** −1.291 ***
(0.123) (0.259)

Urbanization 0.116 −3.600 **
(0.623) (1.463)

Nature endowment −0.002 *** −0.004 ***
(0.001) (0.001)

Time fixed effects Control Control Control Control
Province fixed effects Control Control Control Control

Observations 510 510 510 510
R-squared 0.793 0.839 0.783 0.838

Robust standard errors are presented in parentheses. Significance levels are indicated as follows: *** p < 0.01, ** p < 0.05.

4.2.2. Common Trend Test Results

To assess whether changes in HCE in the provinces subjected to carbon trading policies
can be attributed to these policies and to account for the influence of other factors, we
conducted a common trend test to compare HCE before and after the implementation
of these policies (Figure 3). Before the implementation of carbon trading, no significant
difference in HCE existed between the treatment and control provinces in both urban and
rural areas, thereby confirming the validity of the common trend assumption. After the
implementation of the carbon trading market, the policy’s carbon reduction effects became
increasingly evident, with a more pronounced impact in urban regions. In addition, the
urban policy effect showed fluctuations after the third period, whereas in rural areas, it
weakened after the seventh period. The findings indicate that, over the long term, the
policy fosters the transition to low-carbon lifestyles, with urban areas adopting low-carbon
concepts at an earlier stage compared to rural areas.
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4.2.3. PSM-DID Results

To account for potential non-random effects of carbon trading policies and to ensure
comparability between the treatment and control groups, we employed the PSM-DID
method as a robustness check. We treated the control variables as matching covariates and
employed a logit regression model to calculate the propensity scores. Subsequently, we
performed a matching procedure with a 1:4 ratio using the nearest neighbor approach [60].
Prior to matching, there were substantial discrepancies between the treatment and control
groups, with some variables showing deviations exceeding 100%. After matching, the
deviation of each covariate between the two groups was significantly reduced, falling
within an acceptable range, which indicates satisfactory matching quality (Figure 4). We
then excluded groups with poor matching quality and re-estimated the regression equation.
The results confirm that our baseline findings remain robust (Table 6).
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Table 6. Estimation outcomes of PSM-DID.

Variables
(1) (2)

RiHCE UiHCE

DID −0.381 *** −0.827 ***
(0.062) (0.114)

Control variables Control Control
Time fixed effects Control Control

Province fixed effects Control Control
Observations 277 277

R-squared 0.915 0.907
Robust standard errors are presented in parentheses. Significance levels are indicated as follows: *** p < 0.01.

4.2.4. Replacement of Dependent Variables, Control Variables, and Estimation Methods

The methodology for calculating housing expenditure within household consumption
underwent changes in 2013. In order to address the potential influence of this change on our
analysis, CO2 emissions related to housing were excluded from total HCE, and we used this
adjusted HCE as the dependent variable in our analysis. The findings indicate that carbon
trading policies still significantly reduced HCE (Table 7, columns 1 and 2), indicating that the
changes in statistical methodology did not affect the key attributes of HCE.

Variables which change post-treatment are likely influenced by the policy, making
them potential ‘bad’ control variables. Following Cinelli et al. (2022) [61], we selected 2005
as the base period and incorporated deterministic time trends by multiplying all control
variables by the year (Controls,2005 ∗ year). This approach assessed the robustness of the
variables employed in the benchmark analysis. The results demonstrate that policy effects
remain significantly negative (Table 7, columns 3 and 4).



Sustainability 2024, 16, 9715 14 of 25

Table 7. Robustness test—replacement of dependent variables, control variables and estimation methods.

Variables

Replacement of Dependent Variables Time-Invariant Control Multi-Point DID

(1) (2) (3) (4) (5) (6)

RiHCE UiHCE RiHCE UiHCE RiHCE UiHCE

DID −0.077 *** −0.154 *** −0.318 *** −0.833 ***
(0.013) (0.028) (0.047) (0.106)

DID_M −0.368 *** −0.776 ***
(0.046) (0.103)

Controls,2005 ∗ year Control Control
Control variables Control Control Control Control
Time fixed effects Control Control Control Control Control Control

Province fixed effects Control Control Control Control Control Control
Observations 510 510 510 510 510 510

R-squared 0.806 0.811 0.827 0.815 0.842 0.841

Robust standard errors are presented in parentheses. Significance levels are indicated as follows: *** p < 0.01.

Since China established carbon exchanges in Fujian and Sichuan provinces in 2016,
we included these provinces as treatment groups in our regression model. We employed a
multi-period DID estimation method and introduced a new policy variable (DID_M). The
regression results show that the policy effects remain robust across different specifications
(Table 7, columns 5 and 6).

4.2.5. Other Robustness Test Results

To ensure that the experimental conclusions of this study were not influenced by
unobservable factors, we randomly selected six provinces from the sample to form a virtual
experimental group and conducted a Monte Carlo test, repeating the process 1000 times to
generate the distribution of kernel density of the primary explanatory variables (Figure 5).
Additionally, to further mitigate potential interference from other environmental regula-
tions, for example, the emissions trading policy (ETP) and the low-emission urban initiative
(LEU), we have incorporated the aforementioned policy impacts into Equation (7). The
coefficients of the key policy variables of interest remained significantly negative (Table 8,
columns 1 and 2).
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Table 8. Robustness test—competitive policy, expected effect, and spillover effect.

Variables
Competitive Policy Test Expected Effect Test Spillover Effect Test

(1) (2) (3) (4) (5) (6) (7) (8)

RiHCE UiHCE RiHCE UiHCE RiHCE UiHCE RiHCE UiHCE

DID −0.341 *** −0.817 *** −0.265 *** −0.731 *** −0.537 *** −1.187 ***
(0.052) (0.119) (0.087) (0.222) (0.066) (0.156)

ETP 0.186 ** 0.301 **
(0.091) (0.162)

LEU −0.112 ** −0.118
(0.051) (0.102)

DID_Pre1 −0.120 −0.129
(0.090) (0.267)

DID_Pre2 −0.040 −0.068
(0.067) (0.185)

Spillover −0.348 *** −0.746 ***
(0.055) (0.106)

Control variables Control Control Control Control Control Control Control Control
Time fixed effects Control Control Control Control Control Control Control Control

Province fixed effects Control Control Control Control Control Control Control Control
Observations 510 510 510 510 408 408 289 289

R-squared 0.842 0.840 0.839 0.839 0.857 0.867 0.845 0.844

Robust standard errors are presented in parentheses. Significance levels are indicated as follows: *** p < 0.01, ** p < 0.05.
Columns (1) and (2) added (ETP) (LEU) two policies as control variables for regression. Expected effects were added
in columns (3) and (4). In column (5), a spillover variable at the provincial level was constructed, that is, the region
adjacent to the pilot province is assigned a value of 1, otherwise it is 0. After excluding the pilot province, the spillover
effect was estimated. In column 6, the provinces adjacent to the pilot provinces were excluded, and then the regression
was carried out.

Although the carbon trading policies were formally implemented in 2013, relevant
documents had been issued as early as 2011. To account for potential anticipatory effects
formed prior to the carbon trading policy rollout, we constructed policy variables for
the year before the pilot (DID_Pre1) and two years prior (DID_Pre2) and included them
in Equation (1). The coefficient for these proxy variables of anticipatory effects was not
statistically significant (Table 8, columns 3 and 4), indicating that the carbon trading policies
were not affected by such anticipatory behavior.

In principle, the treatment and control groups should remain strictly separate. How-
ever, if the treatment group benefits from more favorable policies, individuals from the
control group may migrate to treatment areas, resulting in spillover effects. Drawing on
existing research [62,63], we found evidence of a spillover effect from the carbon trading
policies (Table 8, columns 5 and 6). To mitigate this effect, we excluded provinces neighbor-
ing the pilot provinces and re-ran the regression analysis. The results show that the policy
variables remained negative at the 1% significance level (Table 8, columns 7 and 8).

4.3. Mechanism Test
4.3.1. Financial Deepening Effect

Financial deepening can significantly influence household consumption behavior,
thereby affecting HCE [64,65]. Moreover, the goods consumed by households are produced
in the supply sector, and previous literature suggests that financial deepening is a key de-
terminant of production-based emissions [66–69]. Since carbon trading essentially operates
as a financial market [13], financial deepening can be viewed as a beneficial complement to
carbon trading policies [70].

We used the financial inclusion index (FII), developed by Peking University, as a proxy
variable to assess the impact of financial deepening (Table 9). The regression coefficient of
the FII with respect to the DID policy indicator is significant at the 5% level, suggesting
that carbon trading policies have played a role in promoting regional financial deepening.
This finding implies the presence of potential transmission mechanisms. In addition, the
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significantly negative coefficient of the interaction term indicates that financial deepening
strengthens the effectiveness of carbon trading policies in reducing emissions. Specifically,
regulatory effect on urban households is −0.23, which is higher than the effect on rural
households (−0.15). These differences in regulatory impact can be explained from both
supply and demand perspectives.

Table 9. Financial deepening effect.

Variables
(1) (2) (3)

FII RiHCE UiHCE

DID 0.045 ** 0.143 −0.087
(0.022) (0.119) (0.319)

FII_DID −0.157 *** −0.225 **
(0.038) (0.089)

Control variables Control Control Control
Time fixed effects Control Control Control

Province fixed effects Control Control Control
Observations 330 330 330

R-squared 0.997 0.915 0.893
Robust standard errors are presented in parentheses. Significance levels are indicated as follows: *** p < 0.01,
** p < 0.05. Since the inclusive finance index compiled by Peking University covers the period from 2011 to 2021,
the number of samples in columns 1 and 3 is 330.

On the supply side, with ongoing financial deepening, social capital increasingly flows
into sectors such as environmental protection, energy conservation, and clean energy, grad-
ually lowering the carbon intensity of products. On the demand side, financial deepening
primarily affects household consumption behavior.

4.3.2. Employment Effect

Under the influence of social constraints on environmentally harmful public behavior,
carbon trading has led to an increase in labor demand in pilot provinces [71,72]. This,
in turn, affects household consumption patterns related to transportation, heating, air
conditioning, and other goods and services, thereby influencing HCE [73]. Carbon trading
facilitates the movement of workers from underdeveloped areas to regions implementing
pilot programs and transforms the employment composition of firms involved in the carbon
market, particularly by increasing the share of highly skilled workers [74].

To verify the transmission mechanism of the employment effect, we use employment
density (ED) as a proxy variable (Table 10). The results of dependent variable ED demonstrate
a statistically significant impact at the 1% level, this suggests that the implementation of carbon
trading policies has led to an increase in regional employment density, providing evidence
for the presence of an employment effect. The results for the interaction term (ED_DID) show
that the employment effect is significant only in urban areas, which in turn diminishes the
effectiveness of carbon trading policies in reducing emissions. More specifically, adoption of
these policies has led to increased technical requirements for labor in low-carbon industries [75],
which has hindered the employment prospects of low-skilled rural labor.

Table 10. Employment effect.

Variables
(1) (2) (3)

ED RiHCE UiHCE

DID 0.007 *** −0.401 *** −1.166 ***
(0.001) (0.062) (0.128)

ED_DID 0.268 5.411 ***
(1.334) (2.004)

Control variables Control Control Control
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Table 10. Cont.

Variables
(1) (2) (3)

ED RiHCE UiHCE

Time fixed effects Control Control Control
Province fixed effects Control Control Control

Observations 510 510 510
R-squared 0.987 0.839 0.844

Robust standard errors are presented in parentheses. Significance levels are indicated as follows: *** p < 0.01.

4.4. Heterogeneity Analysis
4.4.1. Supply Side Heterogeneity Analysis Results

The industrialization level can influence the carbon intensity of consumer goods.
China, being a vast country with varying levels of industrial development across its regions,
experiences differing impacts from the high-carbon characteristics of industry on the CO2
emissions associated with regional residents’ consumption behavior. Therefore, this study
examined the heterogeneous impacts of the supply side on carbon trading policies by
utilizing data on the share of industrial output in relation to the gross regional product
during the year of policy implementation. The sample was classified into two groups based
on industrialization level, with the 50th percentile serving as the cutoff point (Figure 6).
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Overall, carbon trading policies exhibit a significant negative impact in both high-
and low-industrialization groups. However, the negative impact is more pronounced in
the low-industrialization group compared to the high-industrialization group (Table 11).
High-industrialization groups have established a robust industrial base, with relatively
advanced technology and higher energy efficiency. Most enterprises in these regions have
implemented energy-saving and emission reduction measures, thus limiting the marginal
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impact of carbon trading policies. In contrast, low-industrialization groups have weaker
industrial foundations and lower technological levels. The implementation of carbon
trading policies provides a greater incentive for enterprises to improve energy efficiency
and reduce CO2 emissions. Therefore, the negative impact of carbon trading policies on
HCE is more significant in low-industrialization groups. Additionally, from the perspective
of energy structure, high-industrialization groups tend to have more diversified energy
sources, with a higher proportion of clean energy usage. In contrast, low-industrialization
groups have a relatively homogeneous energy structure, relying heavily on coal and other
high-carbon energy sources, leading to higher carbon intensity.

Table 11. Supply side heterogeneity results.

Variables

High Industrialization Level Low Industrialization Level

(1) (2) (3) (4)

RiHCE UiHCE RiHCE UiHCE

DID −0.176 *** −0.457 *** −0.591 *** −1.117 ***
(0.041) (0.087) (0.182) (0.386)

Control variables Control Control Control Control
Time fixed effects Control Control Control Control

Province fixed effects Control Control Control Control
Observations 255 255 255 255

R-squared 0.903 0.921 0.841 0.837
Robust standard errors are presented in parentheses. Significance levels are indicated as follows: *** p < 0.01.

4.4.2. Demand Side Heterogeneity Analysis Results

The sectoral composition of indirect HCE was categorized into three types based
on consumption demand for urban-rural comparison (Table 12): survival consumption
(food, tobacco, alcohol, clothing, and housing), developmental consumption (education,
culture, entertainment, transportation, communication, and healthcare), and enjoyment
consumption (daily necessities and other services).
Table 12. Demand side heterogeneity analysis.

Variables

Survival Development Enjoyment

(1) (2) (3) (4) (5) (6)

RiHCE UiHCE RiHCE UiHCE RiHCE UiHCE

DID −0.321 *** −0.768 *** −0.051 *** −0.068 ** −0.001 −0.007
(0.050) (0.109) (0.011) (0.027) (0.003) (0.014)

Control variables Control Control Control Control Control Control
Time fixed effects Control Control Control Control Control Control

Province fixed effects Control Control Control Control Control Control
Observations 510 510 510 510 510 510

R-squared 0.811 0.812 0.786 0.788 0.253 0.335
Robust standard errors are presented in parentheses. Significance levels are indicated as follows: *** p < 0.01, ** p < 0.05.

Carbon trading policies have been shown to effectively mitigate high-carbon con-
sumption behaviors associated with survival-based consumption. For developmental and
enjoyment consumption, households with higher levels of demand tend to more readily
adopt low-carbon practices, thereby reducing the economic significance of market-oriented
policy interventions.

Carbon trading policies’ impact on the demand side carries significant implications
for urban-rural carbon inequality. Broadly, the benefits of carbon reduction are reflected in
improved social welfare [76]. However, since the social welfare function of public goods is
relatively fixed, we designed an indicator, following the approach of Wei et al. (2024) [41], to
measure absolute carbon inequality. This indicator, defined as the difference between urban
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and rural HCE, was included as an explanatory variable in Equation (7). The regression
results are displayed in Table 13.

Table 13. The analysis of carbon inequality.

Variables

Carbon Inequality

(1) (2) (3) (4)

Total Survival Development Enjoyment

DID −0.468 *** −0.441 *** −0.020 −0.002
(0.077) (0.082) (0.019) (0.003)

Control variables Control Control Control Control
Time fixed effects Control Control Control Control

Province fixed effects Control Control Control Control
Observations 510 510 510 510

R-squared 0.785 0.759 0.758 0.407
Robust standard errors are presented in parentheses. Significance levels are indicated as follows: *** p < 0.01.

Carbon trading policies have been shown to efficiently reduce regional carbon inequal-
ity, particularly in the area of survival consumption. From the standpoint of allocative
efficiency, carbon redistribution facilitated by market-based environmental policies has the
potential to mitigate carbon inequality between vulnerable and other population groups,
thereby contributing to the reduction in the “environmental justice gap” [76].

5. Discussion

We conducted a comprehensive assessment of the positive impacts of carbon trading
policies on HCE in urban and rural areas, addressing a less explored area in the literature.
Existing studies have primarily examined the effects of China’s carbon trading pilots in
reducing production-based emissions in energy-intensive industries and overall regional
CO2 emissions [17,33,36,77,78] and have demonstrated the positive role of carbon trading
policies in reducing emissions based on the Porter hypothesis [37]. However, some scholars
argue that the impact of carbon market policies on reducing consumption-based emissions
is limited [79]. In contrast, our research confirms the positive effect of carbon trading
policies on consumption related emissions and emphasizes the urban-rural disparity. This
fairness perspective, grounded in cross-sectional comparisons, is critical [80]. Furthermore,
our study captures the more pronounced long-term adjustment effects of these policies on
households, revealing the specific ways in which policy intensity evolves over time. Studies
on the diminishing effects of carbon taxes or carbon trading systems underscore this point [81].
This long-term perspective provides valuable insights into the broader impacts of carbon
trading policies on sustainable development under China’s dual carbon goals.

Previous literature has mainly focused on the direct regulatory effects of carbon trad-
ing on industrial output and technological innovation [14,35,37], with limited consideration
of how these impacts are transmitted to household consumption behavior. We identified
two transmission mechanisms—finance and employment—which are crucial for understand-
ing how carbon trading policies affect HCE. On the supply side, as financial markets deepen,
increasing amounts of social capital flow into environmental protection, energy-saving tech-
nologies, and clean energy sectors, gradually reducing the carbon intensity of products. On
the demand side, financial deepening primarily influences household consumption behavior.
Urban households, due to higher levels of education and income, are more inclined toward
low-carbon consumption practices [65]. Additionally, housing is closely tied to financial
liabilities for Chinese households, which explains why financial deepening has different
impacts between urban and rural areas. This paper argues that although carbon trading
policies do not directly affect income, their implementation comes at the cost of rural residents’
employment opportunities, as they are more likely to lose jobs. This ultimately leads to
environmental inequality, consistent with the literature on whether environmental regulations
disproportionately impact traditionally disadvantaged regions [35,75].
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By distinguishing between the supply-side and demand-side effects, we provide a
more nuanced understanding of carbon trading policies. The broader literature on carbon
markets reveals how regional factors lead to varying policy impacts [33,34]. Our findings
offer a more interesting conclusion: highly industrialized regions are more significantly
affected by such policies than less industrialized regions. When carbon trading policies
encourage both businesses and residents to transition to low-carbon energy, the negative
impact on consumption-based emissions is more pronounced among low-industrialization
groups. Similarly, this heterogeneity issue also manifests in urban-rural differences. Com-
pared to rural households with lower income elasticity, wealthier urban households respond
differently to the price signals of carbon trading [24,42]. These varying responses provide
policymakers with more detailed insights, helping them design complementary policies to
address the distinct needs and challenges of different regions.

China is committed to improving the urban-rural dual structure, and enhancing the
welfare of rural residents is crucial. At the very least, carbon trading policies should not
exacerbate their burdens [82]. Research on carbon policies also emphasizes the potential
unequal impacts across different regions or socioeconomic groups [83,84]. Unlike much
of the literature that holds a pessimistic view of carbon policies, our study confirms the
differentiated impacts of market-based policies on the urban-rural dual structure and
highlights the positive significance of these policies in reducing carbon inequality. Broadly
speaking, understanding residents’ preferences for different types of consumption goods is
essential to grasping the role of carbon policies [24,85]. Particularly in areas of subsistence
consumption, as income rises, carbon policies can leverage market forces to achieve carbon
redistribution, ensuring that the benefits of carbon reduction are considered through an
equity lens. This finding provides valuable insights for policymakers seeking to design
interventions that not only reduce carbon inequality but also promote carbon reduction.

6. Conclusions and Policy Implication

The implementation of market-oriented environmental policies, such as carbon trading,
represents a critical strategy for China in reducing CO2 emissions and addressing carbon
inequality. This study offers an initial exploration of carbon trading policies, with an
emphasis on the consumption side. Employing a DID methodology, this study empirically
analyzes the heterogeneous impacts of carbon trading policies on HCE, and investigates
the underlying mechanisms that explain these variations. The principal outcomes of this
research are outlined below:

• The implementation of carbon trading policies has led to a notable reduction in HCE,
with the most pronounced effects observed in urban areas. Although the policy impact
weakened over time, the findings suggest a lasting influence on promoting low-carbon
lifestyles among households.

• Financial deepening and employment effects are identified as the primary channels
through which the carbon trading market influences HCE. These transmission mecha-
nisms have a more substantial impact on urban households.

• The policy effects differ markedly between urban and rural areas, with carbon trading
policies most effectively reducing HCE related to survival consumption, thereby
helping to alleviate urban-rural carbon inequality from the demand side.

• In light of the results, the following policy implications are suggested:

First, given the inhibitory effects of carbon trading policies on China’s HCE, policy-
makers should fully leverage market mechanisms in environmental regulation and further
advance market-based incentive policies. Accelerating the establishment of an integrated
carbon trading system is crucial for promoting low-carbon lifestyles and supporting China’s
objectives of reducing carbon emissions and achieving carbon neutrality.

Second, improving the coordination between carbon trading policies and household
consumption is of significant practical importance for alleviating urban-rural carbon in-
equality. Policymakers should account for the urban-rural dual structure to ensure equitable
benefits for rural households. As market-oriented environmental policies may not always
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promote fair distribution, complementary carbon distribution policies should be designed
to prevent the widening of carbon inequality.

Lastly, carbon reduction strategies should be tailored to the cost-effectiveness of
household consumption patterns, considering the level of regional industrialization. In
highly industrialized regions, regulatory policies should complement market mechanisms
to achieve more substantial emissions reductions at lower costs. In less industrialized
regions, the application of market-based environmental policies should be expanded to
promote cost-effective carbon reduction. Furthermore, policies should target high-carbon
products related to household subsistence consumption, adapting to regional variations in
consumption needs.

7. Limitations and Future Perspectives

Although one of the study objectives was to explore the impact of China’s carbon
trading policy on consumption-based emissions, we acknowledge that there is scope for
more precise measurement of HCE. Given that a key focus of our research is to examine
changes in the structure of HCE across different provinces in China, we chose the CLA
to estimate indirect CO2 emissions based on annual household consumption data. This
method allows us to capture the structural dynamics of consumption emissions over time at
the provincial level, which is essential for our analysis. However, this method, admittedly,
does not account for the influence of factors such as technological conditions of production
and supply chain structures on HCE. In future research, we will attempt to expand the scope
of our CO2 emission estimations, such as environmental extended input–output analysis
framework. Moreover, this study focused on China’s provincial-level administrative units,
which limits the overall sample size. In future work, we aim to extend the geographical
scope to include city-level administrative units across China, which will ensure a more
robust and diverse sample for analysis.

Last but not least, during the review process, we received constructive feedback from
reviewers, and based on these valuable comments, we made several modifications to
improve the study’s clarity and depth. First, we have added a detailed introduction to HCE
in the background section to provide a more comprehensive research context. Second, we
restructured the introduction to outline the research framework more effectively. Third, we
reorganized the literature review to reflect a more thorough understanding of prior work.
Lastly, we expanded the discussion of key findings to offer additional insights into the
study’s implications. These improvements significantly enhance the study’s contribution
to the field and address the reviewers’ valuable suggestions.
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Nomenclature

Abbreviations Description Unit
HCE Household carbon emissions Mt-CO2
RtHCE Rural total HCE by person t/capita
UtHCE Urban total HCE by person t/capita
TdHCE Total direct HCE by person t/capita
TiHCE Total indirect HCE by person t/capita
RiHCE Rural indirect HCE by person t/capita
UiHCE Urban indirect HCE by person t/capita
ETP Emission trading policy
LCC Low-carbon city pilot
FII Financial inclusion index compiled by Peking University
ED Employment/zoning area 10,000 people/per square kilometer

Spillover
Provinces adjacent to carbon trading pilot provinces are assigned
a value of 1 and others are assigned a value of 0

DID Difference-in-differences model
PSM-DID Propensity score matching–difference-in-differences model
DID_M Multi-point Difference-in-differences model
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